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Abstract 
 

Global sourcing represents one of the major focuses in many industries as a means to lower 

costs.  While global sourcing generally reduces per unit costs, the impact of global sourcing on total 

costs throughout the supply chain often remains unrecognized.  Increased lead-time due to global 

sourcing represents one of the commonly unrecognized costs.  Hence, the simulation model 

developed in this study demonstrates the impact of lead-time length and variation as well as 

variation in demand and safety stocks on the ending inventory and backorder levels in a two product 

MRP system.  The results show that backorders grow at a diminishing rate as a function of lead-time 

while ending inventories show the opposite trend.  In addition, the study shows that firms need to 

more carefully consider the impact of lead-time.  The study demonstrates that lead-time, not just 

lead-time variability, represents a key cost factor. 
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1 – Introduction 
 

Global sourcing represents one of the major focuses in many industries as a means to lower 

costs.  According to total cost research discussed in Chapter 2, global sourcing generally reduces per 

unit costs, but the impact of global sourcing on total costs throughout the supply chain often 

remains unrecognized.  In particular, costs such as purchase price and transportation are easily 

calculated and recorded.  However, costs due to quality issues, reverse logistics and particularly 

increased lead-time often are unmonitored.  

Costs associated with lead-time can be difficult to quantify.  In general, as lead-time grows, 

so does lead-time variability, which negatively impacts forecast accuracy.  As forecast accuracy 

worsens, end product and component backorders tend to increase.  Moreover, low forecast 

accuracy tends to lead to increased system buffers in the form of inventory.  The buffers due to 

increased lead-time come in the form of safety stock and increased batch size to achieve economies 

of scale and transportation.  While the larger safety stocks and batch sizes keep companies at 

desired customer service levels, the inventory and related costs grow throughout the supply chain. 

While some of the Total Cost of Ownership (TCO) literature discussed in Chapter 2 

references the concept of lead-time costs, the actual quantification of the costs usually has been 

ignored.  Hence, this research examines the impact of lead-time, lead-time variability and forecast 

accuracy on backorders and inventory levels throughout a two product MRP driven system.  

Specifically, the extensive literature search found in Chapter 2 reveals a void in research that 

quantifies lead-time and demand variability impacts and costs.  In particular, very few research 

papers either in TCO or operations quantify the impacts of lead-time and stochastic demand in MRP 

systems.  Hence, the model developed in this study demonstrates the impacts of lead-time length 

and variation as well as variation in demand and safety stocks on the ending inventory and 

backorder levels in a two product MRP system.   

The study begins with a thorough search of literature (Chapter 2) on a range of studies from 

qualitative TCO through highly mathematical iterative optimization processes that determine lot 

sizing rules.  In other words, the literature search includes a variety of papers that examine or 

optimize safety stocks, lot sizes, lead-times, inventory levels and more.  However, few of the studies 

attempt to analyze results across multiple explanatory variables. 
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Chapter 3 presents the simulation model for the study.  The simulation model discussion 

outlines the various assumptions and random distributions necessary to make a working MRP 

model.  The structure of the MRP simulation provides a great variety of controllable parameters, 

which permit in-depth investigation of impacts on ending inventories and backorders for both end 

products and component parts/subassemblies.  Chapter 3 provides details about the Bill of 

Materials (BOM) for the product structure, insight into the random distributions of lead-time and 

demand as well as details about the forecasting methodology and more. 

Chapters 4, 5 and 6 present insights into the results of the simulation in intuitive terms.  The 

various graphics offer direct, visual meaning behind the results of changing lead-time, safety stock 

and demand variability levels.  In each Chapter, notes and conclusions give further details for the 

reader to grasp the meaning of the results. 

Chapter 7 presents a detailed statistical analysis of the simulation’s results.  Chapter 7 

breaks the statistical analysis into two parts.  The first part examines the full model with all possible 

interaction terms.  The second part examines only those factors and treatments that offered 

statistically significant changes to ending inventory and backorder levels. 

Chapter 8 explores directions future research might lead as batch sizes, safety stock and 

lead-time variability levels change more dramatically than in the main experiment detailed in 

Chapters 4 through 7.  The research concludes in Chapters 9 with overall findings and conclusions. 

  



www.manaraa.com

3 
 

 
 

2 - Literature Review 
 

This research began with a search of various Total Cost of Ownership (TCO) studies as well 

as other related works on similar topics, such as demand variability, lead-time variability, optimal 

lead-time policies and optimal inventory policies.  The literature search revealed a void in research 

that quantifies lead-time and demand variability impacts and costs.  Hence, the simulation model 

developed in this study demonstrates the impact of lead-time and lead-time variability as well as 

demand variation on the overall inventory levels as well as backorders in an MRP system.  As with all 

studies, the assumptions of the research often dictate the general validity of the study to industry.  

In this study, the goal of the MRP model is to remain both tractable and valid by allowing the 

parameters to vary in ways that mimic real industry without excessive assumption sets.  In 

particular, this study integrates ending inventories and backorders in MRP under various lead-time 

levels with differing levels of demand variability and safety stock.  The results from the study reveal 

that global sourcing and associated long lead-times lead to ever increasing levels of inventory and 

backorders. 

2.1 - Total Cost of Ownership and Lead-Time 
 

Early TCO articles, mostly authored or co-authored by Ellram, discuss detailed conceptual 

TCO frameworks with little quantitative analysis (Ellram L. 1993, Ellram L. M. 1994, Ellram & Siferd 

1998).  Ellram (1993) focuses on using TCO to analyze supplier development (pre-transaction), 

purchase considerations (transaction) and supplier/material defect (post-transaction) impacts 

(Ellram L. , 1993).  While not a part of the current research, future research will integrate the 

impacts of material defects.  In their 1998 article, Ellram and Siferd discuss ways companies use TCO 

as a link to strategic cost management (Ellram & Siferd, 1998).  According to the article, 73% of 

companies included in the case study used TCO to analyze purchases of components while 55% of 

companies used TCO to make raw material purchases.  The article also notes the link between TCO 

and quality focus in 91% of the case study firms as well as use of best value (cost reduction overall) 

items in 82% of firms.  In other words, the components and raw materials in the BOM often 

represent areas of focus in TCO.  Unfortunately, the article does not discuss metrics to assess costs 

of the components or raw materials. 

Relatively recent TCO articles focus on offshore sourcing and the added costs of increased 

lead-times.  Ferrin and Plank’s TCO research tries to incorporate lead-time as a cost driver but does 
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not indicate how lead-times impact costs, merely that costs will go up as a function of lead-time 

(Ferrin & Plank, 2002).  Ferrin and Plank also include a large number of other cost drivers, such as 

purchase price, shipping, transportation and quality costs with some indication of the impact of each 

on the overall costs within a system.  Mary Harding and Michael Harding attempt to make lead-time 

cost rules of thumb, such as simple percent multipliers based on total lead-time (Harding M. L. 2001, 

Harding M. 2007). 

Most TCO articles note the common costs associated with manufacturing, such as purchase 

price, transportation costs and related overhead.  Some of the more recent articles such as Ferrin et 

al. (2002) list many more cost drivers including quality, reverse logistics, lead-time, on-time delivery, 

storage and more.  While TCO literature extensively investigates potential costs, few of the papers 

attempt to give metrics to quantify those costs.  Thus, this research examines the impact of lead-

time and lead-time variability in combination with demand variability and safety stocks on 

backorders and inventory levels as a step toward understanding cost structures.  As already noted, 

this research is of particular use for firms considering long lead-time global sourcing strategies. 

2.2 - Demand and Lead-Time Variability Studies 
 

A number of studies examine the impact of lead-time and demand variability.  One of the 

earliest works in the field appeared in 1976.  Whybark et al. attempt to investigate and categorize 

uncertainty in MRP systems (Whybark & Williams, 1976).  The authors assert that timing uncertainty 

requires safety lead-time while quantity uncertainty requires safety stock.  Future works affirm 

much of the early work by Whybark and Williams.  For example, Maloni et al. investigate the need 

for special planning methods under stochastic lead-times (Maloni & Benton, 1997).  In effect, lead-

time variability comprises one of reasons manufacturers hold safety stock.  Hence, much research 

attempts to understand and quantify the relationship of lead-time variability with safety stock.  A 

later work by De Bodt et al. also confirms that safety stock represents an effective tool to manage 

variation in production planning and scheduling as well as maintenance of customer service levels 

(DeBodt & Wassenhove, 2001).  

Other studies investigate the impact of external demand variability (end-product demand) 

as a random variable.  Grubbstrom et al. discover that proper buffering requires correctly 

dimensioned safety stocks for the master production schedule (MPS) (Grubbstrom & Molinder, 

1996).  Enns notes the impact of batch size on utilization levels while moving down the Bill of 
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Materials (BOM) under known lead-times (Enns, 1999).  Enns finds that appropriate batch sizes can 

lead to low work-in-process (WIP) inventory and low tardiness as well as consistent throughput 

given a known lead-time.  Enns’ later 2002 article demonstrates that performance effects due to 

forecast bias and demand uncertainty impact the MPS and delivery performance quite differently 

(Enns, 2002).  Enns contends that increasing planned lead-time or safety stock will improve delivery 

performance [metrics] depending on the nature of the tardiness.   Enns further contends that 

forecast bias offers no benefit over the use of safety stock.  Talluri et al. discuss setting safety stock 

levels using well established functions based on variable demand and variable lead-time at a case 

study firm (Talluri, Cetin, & Gardner, 2004).  Holsenback et al. employ the same well established 

formulas in their 2007 article on safety stock as a function of variable lead-time and demand 

(Holsenback & McGill, 2007).   

Interestingly, demand variability is often assumed to follow a normal distribution.  Benton 

(1991) and Vollmann et al. (2005) are only a few examples (Vollmann, Berry, Whybark, & Jacobs 

2005, Benton 1991).  Eppen and Martin test the normality assumption by examining two safety 

stock determination models with demand and lead-time as unknown, random parameters that must 

be estimated (Eppen & Martin, 1988).  The model uses exponential smoothing for demand 

forecasts.  From the exponential smoothing model, Eppen and Martin test for normality of the 

errors and find that for long periods of lead-time (j=5 or 10), the normality of error assumption is 

not always valid when demand across periods is correlated.  When the demands are roughly 

stationary, the normality assumption appears reasonable with five or more lead-time periods.  

Moreover, Eppen and Martin’s experimental data shows that forecast error appears to grow as the 

period’s lead-time increases.  The research in this paper uses stationary demand with a modified 

exponential smoothing forecasting method (see Section 3.5). 

Also, several MRP specific articles investigate safety stocks as a function of lead-times and 

batch/lot-sizes.  One of the early and often cited works by Karmarkar notes that manufacturing lead-

times depend on lot sizes as well as utilization levels (Karmarkar, 1987). An earlier work by Gupta et 

al. investigates the impacts of product structure, lot-sizes, position in the BOM as well as lead-time 

uncertainty and lead-time bias (Gupta & Brennan, 1995).  The authors find that costs tend to 

increase as the lead-time uncertainty bias factors increase. The study also notes that uncertainty 

applied at high levels of the BOM has the greatest cost impact.  In their 1996 paper, Zijm and 

Buitenhek discuss the need to integrate lead-time and capacity management in MRP systems (Zijm 
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& Buitenhek, 1996).  In a comprehensive research paper, Koh et al. find that appropriate safety 

stocks, lot-sizes and rescheduling provide the best means to cope with uncertainty (Koh, Saad, & 

Jones, 2002).  Koh et al. categorize and investigate a wide array of uncertainty sources and further 

categorize the research that attempts to harness or understand the uncertainty.  In a 2004 article, 

Koh finds that unexpected lead-time increases (late delivery from suppliers) can have significant 

impacts throughout the BOM, which is known to cause high inventory and system costs (Koh, 2004).  

In addition, Koh finds that delays in a resource can ripple through the MRP system and delay all 

batches held in queue, which increases inventory and system costs further—a finding verified in this 

research.  Jonsson and Mattsson discuss the need for analytically based safety stock levels in MRP 

(Jonsson & Mattsson, 2008).  The article’s survey data of PLAN companies (an affiliate of APICS) also 

shows that among manufacturing companies, daily regeneration MRP and reorder point systems 

remain the most popular inventory management systems for purchased inventory.  Specifically, 61% 

of manufacturers used MRP for parts inventory while 63% used MRP for semi-finished items 

inventory.  Curiously, 27% of the respondents even used MRP for distribution functions.  Most 

importantly, Jonsson and Mattsson find that lead-time accuracy and safety stock levels are the most 

critical parameters for overall MRP performance.   The research in this paper shows that extending 

lead-times for materials only compounds the manufacturing lead-time increases as well as the 

commensurate inventory increases. 

Further studies try to quantify the penalties of shortened lead-times.  Das et al. (discussed 

below) find that suppliers attempt to charge a higher unit price for the small lot-size, short lead-time 

orders (Das & Abdel-Malek, 2003).  Chandra et al. argue similarly that while shortened lead-times 

allow a reduction of safety stock, procurement costs may increase due to increased demands on 

suppliers as well as increased transportation costs (expedited transportation) (Chandra & Grabis, 

2008).  The question of procurement costs will not be a part of the current research but may be a 

consideration for future research. 

Demand variability and lead-time articles offer an enormous depth of research potential as 

seen in the myriad of articles cited above.  The research in this paper picks up on the theme of 

understanding and harnessing knowledge about demand variability, lead-time and particularly lead-

time variability.  None of the previous works have integrated the idea of long lead-times in 

conjunction with demand variability on the backorders and ending inventories within an MRP 

system. 
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2.3 - Resilience, Flexibility and Lengthening Supply Chain Lead-Times 
 

Long supply chains lead to both greater complexity and increased variability (Christopher & 

Peck, 2004).  Christopher and Peck also assert that in-bound lead-times represent a major key for 

supply chain velocity as well as supplier selection.  Moreover, added complexity and variability 

become particularly large problems when companies make decisions in isolation due to forecast 

rather than demand driven systems.  The Christopher and Peck article also discusses the need to 

build a resilient supply chain that can help mitigate such risks.   

Resilience can come in many forms.  One often noted form is redundant or reserve 

suppliers, some of whom are close to the final manufacturing site or point of sale (Chopra & Sodhi, 

2004).  Chopra and Sodhi specifically cite Cisco Systems’ use of slow, overseas suppliers for items 

that are fast-moving, standardized and low risk.  For slower-moving, non-standardized, high risk 

items, Cisco uses more expensive local suppliers to achieve greater flexibility.  In partial contrast, 

Berger and Zeng argue that better communication and stronger ties can lead to lower risk as well as 

more stability in the supply chain, even in the case of single sourcing or limited supplier sourcing 

(Berger & Zeng, 2006).  Their paper goes on to model the impacts of supplier disruptions, the 

operating costs of multiple suppliers and the commensurate financial loss caused by all suppliers’ 

being down.  Unfortunately, the research does not identify the potential downsides of increasing 

lead-times even when those long lead-times are known.  While integration of supply chain risk and 

associated probabilities of the risks are beyond the current research, future research may benefit 

from modeling some risk factors. 

Supply chain flexibility and agility appear to tie in well with lead-time evaluation.  Sharifi et 

al. propose that increased speed (reduced lead-time) directly improves agility (Sharifi & Zhang, 

1999).  Other early papers on supply chain flexibility with regard to procurement often focus on the 

importance of relationships between buyers and suppliers (Narasimhan, Jayram, & Carter, 2001).  

Another early work by Svensson argues both qualitatively and quantitatively that outsourcing 

appears to increase inbound material flow disruptions and related risks, both of which hurt agility 

(Svensson, 2001).  Later papers, such as Das et al., discuss the concept of flexibility in fixed order 

quantity and variable lead-time supply chains (Das & Abdel-Malek, 2003).  Das et al. state that order 
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quantities (lot-size) and lead-time tend to cause the most supply chain conflict due to a buyer’s ever 

decreasing lead-time and smaller lot-size orders to accommodate demand variability.  Moreover, 

the article models and defines flexibility as the ability of firms in the supply chain to mitigate 

procurement price increases and penalties under adverse conditions.  Manzini et al. discuss the 

benefits of added flexibility in the supply chain to handle capability variation (product mix) and 

capacity variation (demand levels) in multi-cellular manufacturing systems (Manzini, Persona, & 

Regattieri, 2006). 

Verma studies the impacts on supply chain agility in a base stock model with stochastic 

demand and fixed replenishment lead-time (Verma, 2006).  Finally, in what may become a seminal 

piece in defining supply chain flexibility and agility, Swafford et al. tie the concept of flexibility and 

agility into multiple dimensions including procurement, manufacturing, distribution and overall 

supply chain adaptability (Swafford, Ghosh, & Murthy, 2006).  Swafford et al. further assert that 

more stable lead-times could allow greater customer responsiveness. 

The current study shows that increasing lead-times lead to significant increases in 

backorders and ending inventory, two areas that flexibility and agility try to minimize.  Moreover, 

the findings show that increased lead-time can negatively impact a company’s ability to meet 

customer needs.  If a company also faces the potential of significant disruptions beyond the simple 

demand and lead-time variability investigated in this study, the results could be quite negative for 

overall supply chain resilience.   

2.4 - Optimization Studies under Demand and Lead-Time Variability 
 

Several previous research papers focus on optimizing lead-time and safety stock.  Each 

optimization model makes varying degrees of limiting assumptions.  In a paper similar to this study, 

Molinder investigates optimal lot-sizes, safety stocks and lead-times (Molinder, 1997).  More 

specifically, Molinder employs design of experiments to define various treatment levels based on 

stochastic demand and lead-time to evaluate the impact on optimal lot-sizes, safety stocks and 

safety lead-times.  The study uses twelve treatment levels to investigate the impact of stochastic 

demand and lead-times.  The stochastic impact is dramatically lessened by choosing predetermined 

factor/treatment combinations.  Molinder also attempts to balance stockout costs with inventory 

holding costs.  Grubbstrom et al. create one of the more broadly valid models using Laplace 
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transforms with Gamma distributions to make safety stock decisions (Grubbstrom & Tang, 1999).  

Their research shows that optimal safety stock levels tend to drop with reduced variance levels. 

An early article by Yano attempts to optimize lead-time directly in a limited structure two-

level subassembly system (Yano, 1987).  Chu et al. also investigate and propose an iterative 

algorithm to minimize holding costs and backlogging costs under lead-time variability (Chu, Proth, & 

Xie, 1993).  Other researchers investigate use of Markov models in limited contexts to achieve 

optimal lead-times to minimize backlogging and holding costs (Dolgui & Olud-Louly, 2002). Dolgui et 

al. note that the assumption set required for modeling makes validity of the Markov model for 

industry somewhat questionable.  A much later work by Persona investigates super BOMs, modular 

product design and safety stock as means to control the forecasts and forecast errors (Persona, 

2007).  Persona demonstrates the efficacy of the model in both make-to-order (MTO) and assemble-

to-order (ATO) contexts.  The article also formulates a total cost of safety stock and demonstrates 

the potential safety stock as well as logistics cost reductions in two industrial case studies.  While 

each of these works focuses more heavily on optimization than the current research, the field of 

research into understanding and controlling lead-time and lead-time variability remains quite active.  

Unfortunately, as Dolgui et al. note, the assumption sets to make inference can be somewhat 

restrictive.  Hence, as already noted, the current research tries to maintain a minimal assumption 

set for modeling purposes. 

In a loosely related paper, Sounderpandian et al. investigate optimization of order quantities 

under long lead-times and uncertainty in finished good demands (Sounderpandian, Prasad, & 

Madan, 2008).  The optimization technique involves linear programming along with genetic 

algorithms and stochastic optimization to determine optimal order quantities.  The paper 

demonstrates the model efficacy with an example application in the plywood industry.  

Sounderpandian et al. stress the impact of long lead-times within the supplier’s intra-country supply 

chain as well as the lead-times to move the product down the chain.  Moreover, the authors note 

that risk of loss and commensurate supply uncertainties are also higher in the developing nations.  

2.5 - Ties to Strategic Sourcing 
 

In an early work, Ellram and Carr argue that for true strategic sourcing, purchasers must 

take an active rather than passive role in controlling material flows (Ellram & Carr, 1994).  In effect, 

Ellram and Carr argue that strategic purchasing should incorporate purchasing departments at high 
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level, strategic decision points.  Other related articles discuss sourcing decisions for vertical 

integration versus outsourcing of production under differing forms of uncertainty (Kouvelis & 

Milner, 2002).  Talluri and Narasimhan note that firms that engage in strategic sourcing must focus 

on supplier capabilities such as management practices, process capabilities and more as opposed to 

simple metrics such as cost (Talluri & Narasimhan, 2004).  In other words, though taking inventory 

costs as a function of lead-time and demand variability can be very useful for defining and 

understanding costs, strategic issues beyond costs must also be considered. 

2.6 - Summary of Articles 
 
A chronological summary of the articles cited above appears in table 2.6.1. 
 
Table 2.6.1:  Summary of Cited Articles 

Lead-time and Demand Variability  

Chandra and Grabis, 2008 

Jons  son and Mattsson, 2008 

Holsenback and McGill, 2007 

Koh, 2004 

Talluri, Cetin and Gardner, 2004 

Enns, 2002 

Koh, Saad and Jones, 2002 

DeBodt and Wassenhove, 2001 

Enns, 1999 

Maloni and Benton, 1997 

Grubbstrom and Molinder, 1996 

Zijm and Buitenhek, 1996 

Gupta and Brennan, 1995 

Benton, 1991 

Eppen and Martin, 1988 

Karmarkar, 1987 

Whybark and Williams, 1976 

Topic 

Supplier penalties for short lead-times 

Criticality of analytically based safety stocks 

Applications of established safety stock formulas 

Ripple effect of material delays through the BOM 

Applications of established safety stock formulas 

Forecast bias and demand uncertainty impact MPS 

Best buffers to handle uncertainty 

Safety stock to manage planning, scheduling & service 

Batch size impact on utilization through the BOM 

Planning needs to accommodate variability 

Proper safety stock buffering in the MPS 

Integration of lead-time and capacity management 

MRP  cost impacts due to variability and BOM position 

Safety stock levels with normally distributed demand 

Safety stock levels & normality of forecast error 

Lot size impacts on lead-time 

Early work in MRP uncertainty buffers 

Optimization Studies Related to Lead-
time and Demand Variability 

Sounderpandian, Prasad, & Madan, 2008 

Persona, 2007 

Dolgui and Olud-Louly, 2002 

Grubbstrom and Tang, 1999 

Molinder, 1997 

Topic 
 

Optimal order quantity in developing nations 

Optimizing safety stocks with the SBOM and modularity 

Markov models to reduce holding and backlog costs 

Reduced variance leads to lower safety stock levels 

Optimizing lot-size, lead-time and safety stocks 
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Chu, Proth and Xie, 1993 

Yano, 1987 

Optimization of costs under lead-time variability 

Optimal lead-times in two-level subassemblies 

Resilience, Flexibility and Lengthening 

Supply Chain Lead-Times 

Berger and Zeng, 2006 

Manzini, Persona and Regattieri, 2006 

Swafford, Ghosh and Murthy, 2006 

Verma, 2006 

Christopher and  Peck, 2004 

Chopra and Sodhi, 2004 

Das  and Abdel-Malek, 2003 

Narasimhan, Jayram and Carter, 2001 

Svensson, 2001 

Sharifi and Zhang, 1999 

Topic 

 

Optimizing number of suppliers 

SC flexibility to handle capacity and capability variance 

Defining flexibility and agility in the supply chain 

Supply chain agility in the face of variability 

Resilience and dangers of longer supply chains 

Supply chain risks and industry reactions 

Flexibility in lot-size & lead-time buyer/supplier conflict 

Flexibility of supplier relations 

Outsourcing disruptions for inbound material flows 

Relation of lead-time to supply chain agility 

Strategic Sourcing Links 

Talluri and Narasimhan, 2004 

Kouvelis and Milner, 2002 

Ellram and Carr, 1994 

Topic 

Monitor and understand supplier capabilities 

Modeling impacts of outsourcing versus integration 

Lit review of strategic sourcing methods/research 

TCO and TCO with Lead-Time 

Harding M. , 2007 

Ferrin and Plank, 2002 

Harding M. L., 2001 

Ellram and Siferd, 1998 

Ellram L. M., 1994 

Ellram L. , 1993 

Topic 

Discussion of practical lead-time cost metrics 

Exhaustive list of TCO cost factors 

Simple cost metrics related to lead-time 

TCO implementation in strategic cost management 

Standard vs. Unique TCO models 

Framework for pre, post and transactions in TCO 

Textbooks 

Vollmann, Berry, Whybark, & Jacobs, 2005 

Topic 

Manufacturing Planning and Control Systems in SCM 

2.7 - Summary of Literature Search Findings 
 
The literature search reveals that demand variability and lead-time studies are plentiful and span 

multiple topic areas.  Supply chain agility, flexibility, resilience, planning, optimization as well as MRP 

represent some of the many areas that note the various impacts due to lead-time on costs, 

inventory levels, supply chain responsiveness and customer service.  However, few of the papers 

attempt to directly quantify the impact of excessively long lead-times due to global sourcing.  TCO 

papers sometimes note lead-time as a cost but only give minimal guidance on calculating the cost.  

In resilience, flexibility and agility papers, increased lead-time throughout a supply chain emerges as 

a negative factor for the flexibility, resilience and agility.  MRP research focuses include finding 
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optimal safety stock levels, transportation methods and costs given set levels of lead-time.  Yet, little 

of the existing research attempts to model ever increasing lead-times due to global sourcing.  In 

particular, the current literature lacks investigation of ending inventories and backorders in MRP 

under various lead-time levels with differing levels of demand variability and safety stock.  
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3 - The Simulation Model 
 

The model employs a two product structure with shared and unique components.  

Moreover, the model uses symmetrical and asymmetrical components as well as unique 

components to discern potential backorder and ending inventory differences.  Further, distributional 

assumptions came from various works cited in Chapter 2 of this work.  For instance, many research 

papers and supply chain texts generally assume that demand variability follows the normal 

distribution (Vollmann, Berry, Whybark, & Jacobs 2005, Benton 1991).  The following sections 

discuss the experimental factors, batch sizes, steady state levels, forecasting methods, bill of 

materials, MRP regeneration and other facets of the simulation model. 

3.1 – Bill of Materials 
 

The bill of materials (BOM) contains two end products (parents) and four component inputs.  

Component C is a common component with symmetric requirements of 4 pieces per unit of end 

product.  Component D is unique to end product A with a requirement of one unit per unit of end 

product A.  Component F is unique to end product B with a requirement of four units per unit of end 

product B.  Component E is another common component with asymmetric requirements.  End 

product A requires one unit of component E while end product B requires four units of component 

E.  The different quantity and symmetry in components should provide both more validity and 

information about potentially different ending inventory and backorder levels.  Table 3.1.1 and 

Figure 3.1.1 display the BOM in tabular and graphical form, respectively. 

Table 3.1.1:  Bill of Materials 

Level 0 Level 1 

Quantity Per 

Parent 

Product A 

  

 

Component C 4 

 

Component D 1 

 

Component E 1 

   Product B 

  

 

Component C 4 

 

Component F 4 

 

Component E 4 
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Figure 3.1.1:  Bill of Materials Graphical Depiction 

3.2 - Capacity and Daily Regeneration 
 

 The simulation models companies in an assemble-to-order (ATO) environment.  Orders 

arrive daily.  Additionally, the MRP system regenerates daily.  When orders for end products arrive, 

the companies promise delivery 5 days out.  In the simulation, production capacity is always 

adequate to meet demand when component parts are available.  The daily regeneration of the MRP 

allows frequent determination of production requirements, demand levels and forecasts.  Hence, 

the error due to regeneration should be minimal when compared to a weekly or longer MRP 

regeneration cycle.  However, the planned order receipts created in a day freeze into the future for 

the length of the lead-time (no change orders are allowed within the lead-time period).  In other 

words, the planned order receipts within the lead-time will always be zero – the manufacturer 

cannot alter orders within the lead-time.  In practical terms, once a shipment leaves a supplier, a 

supplier cannot insert more components into the shipment.  Since MRP is a forecast driven system, 

the freeze period length can have a great impact on the overall performance of the MRP system.  

Any demand changes within the lead-time that increase requirements beyond the predicted on 

hand inventory generate additional backorders. 

3.3 – Backorders 
 

The simulation also runs under the assumption that no orders are lost.  In other words, 

customers will choose to indefinitely backorder end products rather than seek a different supplier.  
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A complete stockout of any one component required to make an end product generates a backorder 

for the end product.  To exemplify, if component E is entirely stocked out (on backorder), the 

manufacturer can produce neither end product A nor B. 

Further, when the supply of a component is not sufficient to meet the full demand for end 

products, the shortage splits proportionally between products A and B.  For example, assume end 

product A has demand for 100 units while end product B also has demand for 100 units.  However, 

only 400 units of component E are available while all other component stocks are sufficient to meet 

demand.  The BOM shows that demand for 100 units of end product A leads to gross requirements 

of 100 units of component E.  Furthermore, the BOM shows that demand for 100 units of end 

product B leads to gross requirements of 400 units of component E.  Hence, component E has total 

gross requirements of 500 units but only 400 units available.  Since the requirements will be split 

proportionally among products and 400/500 or 80% of the components required are available, 

0.8*400 or 320 units of component E will be assigned to produce end product B while 0.8*100 or 80 

units of component E will be assigned to produce end product A.  In terms of finished goods, the 

manufacturer will create 80 units of end product A and 80 units of end product B.  In other words, 

when X% of a component’s gross requirements are available, the manufacturer will produce X% of 

the demand for end products A and B. 

3.4 - Demand Distribution 
 

The simulation models end product demand as normally distributed with a mean of 100 and 

two standard deviation levels of 10 and 15.  Mathematically, 

 

),(~ NDemand  

s.t. 

100  

10Low  

15High  
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All random numbers were created in PROModel simulation package and rounded to the 

nearest integer in Excel to create the required random vector of demand.  Since the demand follows 

a truly random distribution, no built-in cyclicality/seasonality exists. 

3.5 - Forecast Methodology 
 

The adaptive-response-rate single exponential smoothing (ADRES) appears to be a relatively 

well behaved forecasting model for the randomly generated demand data (Wilson & Keating, 2002).  

The ADRES adapts to the data to provide automatic adjustments for frequent changes in demand, 

particularly when the model forecasts demand that is roughly symmetric around a mean value.  

Forecasting a demand based on N(100, sigma), where sigma is 10 or 15, the ADRES represented an 

easy choice.  The ADRES in mathematical form: 

 

ttttt FXF )1(1    , s.t., 

t

t

t
A

S
 ,   where   

1)1(  ttt SeS    and 1)1(  ttt AeA   

ttt FXe   

 

Hence, alpha is a dynamic value based on the past period smoothed error (St) and absolute 

smoothed error (At). 

The ADRES model forecasts one period forward.  Hence, since the data has no trend or 

seasonality, the forecast for demand in day X is also the forecasted demand for every day through 

the length of the lead-time.  Thus, for a 42 day lead-time, the MRP system will generate 

requirements based on a forecast schedule X+42 days into the future.  Thus, if the forecast is 

particularly far from the true demand for the period, the forecast error will carry through the entire 

MRP freeze period. 

The tracking signal provided a check of the biases of the forecasts.  The tracking signal 

divides the running sum of forecast errors (RSFE), a measure of bias, by the mean absolute deviation 

(MAD), a measure of error, to give a picture of the true bias (in terms of MAD) in the system.  To 

hold the tracking signal within roughly desired bounds of +/-5, the ADRES forecasting held beta 
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constant at 0.2 with alpha varying as needed.  A summary of the tracking signals for each forecasting 

vector appears in Table 3.5.1. 

Table 3.5.1:  Tracking Signals on Forecast Error 

  

 

Since the MRP followed a daily regeneration, forecasting also occurred daily and only one 

day into the future.  Random error showed up as quite large in some demand vectors and relatively 

small in others—just as it would in real companies.  For instance, A-4 and B-2 show particularly large 

tracking signals in both the levels of demand variability.  On the other hand, A-2 and B-1 show very 

small tracking signals at both levels of demand variability.  Hence, the simulation covers scenarios 

from excellent forecasts down to poor, highly biased forecasts for greater general validity.  While 

discussion of various alternative forecasting methods is beyond the scope of this research, a real 

company would be unlikely to achieve forecast accuracy significantly better than A-2 and B-1 or 

worse than A-4 and B-2.  

3.6 - Lead-Time Distribution 
 

The simulation models the maximum early lead-time (MELT) as a gamma distribution.  MELT 

represents that maximum number of days early that a shipment can arrive for each potential lead-

time.   As a conservative assumption, orders were only allowed to arrive early as a ratio of LT/7.  In 

other words, the maximum amount an order could arrive early was one day for a seven day lead-

time while a forty-two day lead-time could have an order arrive up to six days early.  In reality, the 

variability of arriving early could be larger.  As for arriving late, the gamma distribution has a right 

skewed tail that allows orders to be significantly late but only rarely.  All random digits were created 

as vectors in PROModel and rounded to the nearest integer to create a vector of lead-times in Excel.  

A summary of the results appears in Table 3.6.1.  Mathematically, 
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),(~)( GammaMELTadTimeMaxEarlyLe  or ),(   

s.t. 

2

2

MELT

MELT




   while 

MELT

MELT






2

  

Thus,  

MELTMELTE  )(  

and 

22)( MELTMELTV    

 

 and   take on values to set the coefficient of variation equal to 0.3 

 








2

)(

)(


MELTE

MELTV
CV = 2/1 = 0.3 

 

Thus, 3.02/1   or  1111.11  

 

Hence, the   takes on values such that the expected values are 

 

)(MELTE  =  

 

1 for 7 day LT, 1111.11 , 09.0  

2 for 14 day LT, 1111.11 , 18.0  

3 for 21 day LT, 1111.11 , 27.0  

4 for 28 day LT, 1111.11 , 36.0  

5 for 35 day LT, 1111.11 , 45.0  

6 for 42 day LT, 1111.11 , 54.0  
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and the standard deviations are 

 

2)()(  MELTVMELTSD  =  

 

0.3 for 7 day LT 

0.6 for 14 day LT 

0.9 for 21 day LT 

1.2 for 28 day LT 

1.5 for 35 day LT 

1.8 for 42 day LT 

 

Table 3.6.1: Summary of Lead-Time Distribution Means and Variances 

 

 

 

 

 

 

 

 

In effect, the mean of the Gamma distribution positions at the expected lead-time in days.  

The Gamma distribution models the variance around the expected lead-time.  The higher the lead-

time, the wider the gamma distribution becomes as a function of the CV.  Of course, the gamma 

distribution truncates at zero but skews on infinitely at higher values.  In other words, the expected 

lead-time is the original lead-time in days while MELT represents the maximum number of days an 

order can arrive early, which truncates at zero.  The standard deviation of the MELT follows the right 

skewed tail of the Gamma distribution.  Hence, there is no direct truncation on the number of days 

an order can be late. 

 

 

 

LT Days Alpha Beta Beta^2 E(MELT) V(MELT) SD(MELT) 

7 11.11111 0.09 0.0081 1 0.09 0.3 

14 11.11111 0.18 0.0324 2 0.36 0.6 

21 11.11111 0.27 0.0729 3 0.81 0.9 

28 11.11111 0.36 0.1296 4 1.44 1.2 

35 11.11111 0.45 0.2025 5 2.25 1.5 

42 11.11111 0.54 0.2916 6 3.24 1.8 
 
     The coefficient of variation remains at 0.3 for all calculations. 
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3.7 - Steady State 
 

As noted in the forecasting section, the adaptive-response single exponential smoothing 

forecasting system was set to hold beta constant at 0.2 with alpha varying as needed.  Each 

simulation replication generated 1000 days of data.  To allow steady state to take effect, each 

experimental run removed the first 150 observed days.  Many simulation runs achieved steady state 

much earlier than 150 days.  Yet, consistency of the sample size and conservative estimates were 

fortunate benefits from the data loss.  Steady state was checked graphically for every treatment 

level of the simulation.  Law and Kelton’s text on simulation modeling describes the method 

employed (Law & Kelton, 2000). Figures 3.7.1 and 3.7.2 show examples of output of twenty period 

moving averages for various responses in the simulation. 

 

 

Figure 3.7.1:  Sample steady state graph for DV10, LT42, SS0 on Average Backorders of End Product B 

 

 

Figure 3.7.2:  Sample steady state graph for DV15, LT7, SS0 on Average Ending Inventory on Component C 
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3.8 - Safety Stock 
 

Safety stock had no distributional assumptions.  Instead, two main effect factor levels were 

set with one additional pilot study level.  The main effect levels were no safety stock and 20% of 

daily demand.  The pilot study level held safety stock at 40% of daily demand to observe the impact 

of ever increasing safety stock levels on both backorders and ending inventory. 

3.9 - Batch Size 
 

The experiment held batch sizes fixed.  While batch size was not part of the main 

experiment, experimental subsets test the impact of batch size at extremes of lead-time (e.g., 7 and 

42 days).  Batch size for the main experiment was always lot-for-lot (L4L).  As noted, orders could 

occur in each period to meet forecast demand for the length of the lead-time. 

3.10 - Final Experimental Models 
 

The experiment’s main effects at the factor level: 

 Lead-Time (LT):  Lead-time at factor levels 7, 14, 21, 28, 35 and 42 days [6 levels] 

o Lead-time variance follows a Gamma distribution. 

o As noted in the Lead-time distribution section, the coefficient of variation for lead-

time remained constant at 0.3. 

 

 Demand Variability (DV):  Demand variability had factor levels 10 and 15 [2 levels] 

o Demand was modeled using a normal distribution with mean 100. 

 

 Safety Stock (SS):  Safety stock was set at either 0% or 20% of average daily gross 

requirements for each component under the ratios described in the BOM.  For example, 

component C has gross average daily requirements of 800 units.  Hence, safety stock at 20% 

of average daily gross requirements leads to a safety stock of 160 units.  [2 levels] 

 

Treatment levels (combinations of the factor levels): 

 LT = 7, DV = 10, SS = 0 

 LT = 14, DV = 10, SS = 0 

. 
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. 

 LT = 35, DV = 15, SS = 20% 

 LT = 42, DV = 15, SS = 20% 

Hence, the main effects consisted of 24 treatment levels (LT*DV*SS = 6*2*2 = 24).  Each 

treatment level had n=5 replicates.  

Other effects examined in subsequent experiments include zero lead-time variability, higher 

safety stock levels and larger batch sizes.  Each of these other effects contains between four and 

twelve experimental runs. 

 Zero Lead-Time Variability:  Additional experimental runs investigate the impact of zero 

lead-time variability at each lead-time and demand variability level.  [12 additional runs] 

 

 Safety Stock:  Another set of additional runs investigates a 40% safety stock level at 7 and 

42 days of lead-time with demand variability at sigma equal 10 and 15.  [4 additional runs] 

 

 Batch Size:  An additional set of experimental runs investigates the impact of increasing 

batch size to two weeks (14 days) of average demand or simply 100*14 = 1,400 units 

multiplied by the appropriate BOM multiplier for each component.  [8 additional runs] 

 

The total experiment contains 48 experimental runs with 240 replicates.  120 replicates were 

used in the main experiment for the first 24 experimental runs.  The remaining 24 experimental runs 

split replicates across the additional questions of interest.   

The responses of interest include end product backorders, component backorders and 

component ending inventory.  Each of these requires examination for statistical as well as practical 

importance. 
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4 – Simulation Results and Findings 
 

Chapter 4 focuses on the practical significance of the experimental results.  All main effects 

are statistically significant.  Many interaction effects are not statistically significant.  A full statistical 

analysis appears in Chapter 7.   

While the experiment/simulation tries to isolate the impacts of the main effects (lead-time, 

safety stock and demand variability), the forecasting method (ADRES) and random error also cause 

some of the effects seen.  Most of the impact of the forecasting error should appear as random 

error.  Yet, while the simulation gives guidance on the general pattern due to main effects, other 

impacts could make significant performance differences for real world manufacturers.  The potential 

exists that forecasting error added to the extremely poor results in terms of backorders and ending 

inventory at the highest lead-times.  Interestingly, the company with the very poor forecasting 

(tracking signal average of 8.8 indicating bias) did not show up as consistently high or low in terms of 

backorders or ending inventory.  In other words, the MRP system appears to have smoothed the 

biased forecast by adjusting requirements dynamically at each level of lead-time.  In any case, as 

with any simulation, validity is highest when the modeling assumptions (outlined in detail in Chapter 

3) are met. 

4.1 – Graphical Analysis 
 

The responses of interest in the experiment include end product backorders, component 

backorders and component ending inventories.  As noted in the simulation model section, the main 

effect experimental variables include safety stock, lead-time and demand variability.  The trends 

across lead-time in each of these responses can be seen most easily through graphical analysis.  In 

each case, the examined isolated effect is calculated as an average across all other effects. 

The first set of graphs show that as lead-time grows, the level of end product backorders 

grows.  Likewise, as lead-time grows, the backorders and ending inventory of components also 

grow.  See Figures 4.1.1 – 4.1.3 to examine end product backorders, component backorders and 

component ending inventories, respectively. 
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Figure 4.1.1:  Average End Product Backorders across Lead-Time in Days 

 

Figure 4.1.1 displays that end product backorders grow at a diminishing rate as lead-time 

grows.  Of course, other experimental factors generate different impacts on the growth of 

backorders and ending inventory as discussed in Chapters 5 and 6.  Another note is that backorders 

of end product A appear to grow at a faster rate than the backorders of end product B, which 

appears to be in part due to the more linear rate of increase in backorders for component D.  At a 

lead-time of 7 days, the difference between the two backorders averages only 5 units and grows to 

13 units at a lead-time of 42 days.  Since each end product has an average daily demand of 

approximately 100, the difference could be significant for some firms. 

As already noted, the average demand for each end product is approximately 100 units per 

day.  In other words, at 21 days of lead-time, the average backorders per day for end product A 

exceed average daily demand.  Likewise, end product B backorders exceed average daily demand at 

approximately 24 days of lead-time.  In other words, the systems are not serving customer needs 

well at relatively short lead-times.  Chapters 5 and 6 analyze the impact of safety stock and demand 

variability potential causes behind the poor backorder performance of the system. 
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Figure 4.1.2:  Average Component Backorders across Lead-Time in Days 

 

The BOM (section 3.1) shows that end item C has symmetric requirements of four units per 

unit of end product A and four units per unit of end product B.  Thus, the total gross requirements 

for end product C are the highest of any component part in the experiment.  As figure 4.1.2 displays, 

backorders for component C represent the largest magnitude backorders of any component, as 

expected.  Both end products A and B require component E but asymmetrically.  Figure 4.1.2 shows 

the impact of the lessened requirements for component E.  End product B requires four units of 

component F per unit of end product B.  End product A requires one unit of component D per unit of 

end product A.  Hence, the total backorders for D and F are the lowest among the backorders.   

Each of the backorders shows a diminishing growth rate overall.  However, the 

symmetrically required component C average backorders grow faster than any other component 

average backorder and do not appear to level off as quickly.  Moreover, component D shows a 

slower rate of diminishing returns in relative proportion to the other components. 
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Figure 4.1.3:  Average Component Ending Inventory across Lead-Time in Days 

 

Unlike backorders, which show diminishing growth rates, ending inventory appears to 

continue growth at an accelerating rate as lead-time grows.  Due to the product structure (see 

section 3.1), the ending inventory for component C grows the fastest while component D grows the 

slowest, which helps explain the less dramatic growth rate in backorders for component D observed 

in Figure 4.1.3. 

Unexpected are the nearly identical ending inventories for components E and F.  

Component F is an asymmetrically shared component while component E is unique to end product 

B.  Gross requirements are similar at 500 units per day of F and 400 units per day of E.  However, the 

nearly identical results, both in magnitude and trend, still represent somewhat of a surprise. 

Quantitatively, ending inventory of component C grows from an average of approximately 

200 units at a lead-time of seven days to nearly 1000 units at a lead-time of forty-two days.  In 

percentage terms, ending inventory for component C grows by nearly 500%.  Other inventories 

show similar percent gains at lower raw inventory levels. 

4.2 – Discussion of Results 
 

The overall results show that as lead-time grows, ending inventories and backorders of 

component parts grow.  As the backorders of component parts grow, so do the backorders of end 

products.  Backorders grow at diminishing rates while inventories grow at accelerating rates.  Of 

course, both higher backorders and higher inventories lead to higher costs for the firms. 
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Two interesting notes emerge from the overall experimental picture.  First, at only 21-24 

days of lead-time, average end product backorders exceed average daily demand.  In other words, 

the system fails to keep backorder levels below demand at approximately a three week lead-time.  

The result demonstrates that companies engaging in relatively long lead-time global sourcing should 

exercise caution or at least recognize the potential for customer service issues.  Second, average 

ending inventories for a jointly, asymmetrically required component are nearly identical to the 

average ending inventories of a lower gross requirement component required for only one end 

product.  In other words, the impact of asymmetry in component requirements does not appear to 

have a major impact in the ending inventories.  The gross requirements, rather than common parts 

or symmetry of requirements, seem to have the largest impact on ending inventory levels.   

Sections 5 and 6 discuss the impacts on ending inventory and backorders due to safety stock 

and demand variability levels across lead-times.  Each section breaks down the impacts of demand 

variability and safety stock in isolation and then in combination. 
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5 - Analysis of Backorders 
 

Chapter 4 notes that average end product backorders exceed average daily demand at only 

21-24 days of lead-time.  Chapter 5 analyzes some of the potential causes of the breakdown as well 

as investigates other points of interest in the backorder patterns for both end products and 

components. 

5.1 - Lead-Time Impact on End Products and Components 
 

In the overall system, backorders exceed average demand at 21-24 days of lead-time and 

beyond.  The following sections analyze the impacts of demand variance and safety stocks on 

backorder levels at the various lead-times. 

5.2 - Demand Variance Impact on End Products across Safety Stock Levels 
 

Figures 5.2.1 and 5.2.2 show the average backorder level per day (averaged across safety 

stock levels) for end products A and B, respectively.  In each graph, two lines appear showing the 

trend for demand variability at standard deviations 10 and 15.  As discussed in section 3.4, end 

product demand is modeled under a normal distribution with mean 100 and standard deviations of 

10 and 15 units.  In general, higher demand variability should lead to higher backorders.  Figures 

5.2.1 and 5.2.2 verify the intuition that greater demand variability leads to higher average levels of 

backorders. 

 

 

Figure 5.2.1:  Average Backorder of End Product A at Demand Variability 10 and 15 across Lead-Time in Days 
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Figure 5.2.2:  Average Backorder of End Product A at Demand Variability 10 and 15 across Lead-Time in Days 

 

Both Figures 5.2.1 and 5.2.2 show very similar diminishing growth patterns for the average 

backorder levels.  The impact of increased demand variability on average backorder level is 

somewhat consistent at each level of lead-time until a convergence at high lead-times.  While the 

end products do not show the convergence pattern as strongly as the components (discussed 

below), the average backorder level starts to converge between the two demand variability levels at 

the highest levels of lead-time.  Hence, companies that are concerned about the demand variability 

in their industry, something that is often regarded as outside an individual company’s control, can 

see that increased lead-time worsens backorder levels but at a diminishing and somewhat 

consistent amount for short and fairly long lead-times with a potential convergence at the longest 

investigated lead-times. 

5.3 - Demand Variance Impact on Components 
 

Figures 5.3.1 through 5.3.4 show the average backorder level per day for components C, D, E 

and F, respectively.  In each graph, two lines appear showing the changes in trend due to end 

product demand variability at standard deviations 10 and 15.  End product demand variability 

directly impacts component demand as shown in the BOM (see section 3.1). 
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Figure 5.3.1:  Average Backorder of Component C at Demand Variability 10 and 15 across Lead-Time in Days 

 

Figure 5.3.1 shows a diminishing growth rate of average component C backorders with a 

convergence at the highest level of lead-time (42 days).  Examination of the standard deviations of 

demand at 10 and 15 shows that demand variability 15 grows average backorders at a faster rate 

than demand variability 10 until a sudden drop and convergence of the average backorder levels 

after 35 days of lead-time. 

 

 

Figure 5.3.2:  Average Backorder of Component D at Demand Variability 10 and 15 across Lead-Time in Days 

 

Figure 5.3.2 shows a diminishing growth rate of average component D backorders with 

another convergence at the highest level of lead-time (42 days).  The convergence at 42 days of 
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lead-time could be cause for modeling longer lead-times in the future to see if some sort of demand 

variability cancelation occurs at very high lead-times. 

 

 

Figure 5.3.3:  Average Backorder of Component E at Demand Variability 10 and 15 across Lead-Time in Days 

 

Figure 5.3.3 once again shows a diminishing growth rate of average component E 

backorders.  Component E shows little convergence at the highest lead-times. 

 

 

Figure 5.3.4:  Average Backorder of Component F at Demand Variability 10 and 15 across Lead-Time in Days 

 

Figure 5.3.4 shows that component F follows a pattern similar to the other components with 

a diminishing growth rate in average component backorders.  Once again, component F shows 

convergence of the two demand variability levels at the highest level of lead-time (42 days).   
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The convergence in three of the four components at 42 days of lead-time appears to be 

worth future investigation.  The result could be due to random error or some other factor.  None the 

less, future simulations likely should model longer lead-times to see if some sort of demand 

variability cancelation occurs at very high lead-times. 

5.4 - Safety Stock Impact on End Products across Demand Variability Levels 
 

Figures 5.4.1 and 5.4.2 show the average backorder level per day across both levels of 

demand variability for end products A and B, respectively.  In each graph, two lines appear showing 

the trend for safety stock levels of 0% and 20% of average gross daily requirements for components.  

In other words, safety stock is not modeled for end products in the simulation since the 

manufacturers produce and ship orders within the five day promised lead-time window (when 

component stock is available).  Figures 5.4.1 and 5.4.2 verify the commonly held notion that lower 

component safety stock levels lead to higher average backorder levels for end products. 

 

 

Figure 5.4.1:  Average Backorder of End Product A at Component Safety Stocks 0% and 20% of Gross Daily Requirements 

across Lead-Time in Days 
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Figure 5.4.2:  Average Backorder of End Product B at Component Safety Stocks 0% and 20% of Gross Daily Requirements 

across Lead-Time in Days 

 

Figures 5.4.1 and 5.4.2 show very similar diminishing growth patterns for the average 

backorder levels across the two safety stock levels of 0% and 20% of gross daily component 

requirements.  The lines move in an almost perfectly parallel fashion, showing that the impact of 

increased safety stock on average backorder level is roughly constant at each level of lead-time.  In 

fact, the difference between average backorders due to safety stock levels at each lead-time is 

approximately constant at 14 units for end product A and 13 units for end product B.  In effect, 

safety stock simply reduces backorder levels by a roughly constant amount no matter the lead-time 

level.  Chapter 6 shows that the price for the diminishing backorder levels is actually a growing rate 

of daily ending inventory. 

5.5 - Safety Stock Impact on Components 
 

Figures 5.5.1 through 5.5.4 graphically display the average backorder level per day for 

components C, D, E and F, respectively.  In each graph, two lines appear displaying the trend for 

safety stock levels of 0% and 20% of gross daily requirements.   
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Figure 5.5.1:  Average Backorder of Component C at Safety Stocks 0% and 20% of Gross Daily Requirements  

across Lead-Time in Days 

 

 

Figure 5.5.2:  Average Backorder of Component D at Safety Stocks 0% and 20% of Gross Daily Requirements  

across Lead-Time in Days 
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Figure 5.5.3:  Average Backorder of Component E at Safety Stocks 0% and 20% of Gross Daily Requirements  

across Lead-Time in Days 

 

 

Figure 5.5.4:  Average Backorder of Component F at Safety Stocks 0% and 20% of Gross Daily Requirements  

across Lead-Time in Days 

 

Figures 5.5.1 through 5.5.4 all show roughly the same result—safety stock has a nearly 

constant impact on the average backorder level across each level of lead-time.  Unlike the average 

backorder levels seen at different levels of demand variability, the average backorder levels at each 

safety stock level do not converge or even change in pattern as a function of lead-time. 

5.6 – Backorder Analysis for Components Combined Analysis 
 
Figures 5.6.1 through 5.6.6 graphically display impacts on backorders due to changes in both 

demand variability and safety stock level combinations. 
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Figure 5.6.1:  Average Backorder of End Product A at all Safety Stock and Demand Variability Levels across Lead-Time in 

Days 

 

Figure 5.6.1 shows that DV10-SS0 and DV15-SS20 appear to be approximately the same.  All 

trends are nearly the same. 

 

 

Figure 5.6.2:  Average Backorder of End Product B at all Safety Stock and Demand Variability Levels across Lead-Time in 

Days 
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Figure 5.6.2 once again shows that DV10-SS0 and DV15-SS20 appear to be approximately 

the same at each mean level.  As with end product A, all trends are nearly the same for every 

treatment level. 

 

 

Figure 5.6.3:  Average Backorder of Component C at all Safety Stock and Demand Variability Levels across Lead-Time in 

Days 

Figure 5.6.3, the graphic for component C, shows that DV10-SS0 and DV15-SS20 appear to 

be similar at low lead-times but diverge at high lead-times.  The trends in the treatment levels show 

some variability, particularly at the longest lead-times. 

 

Figure 5.6.4:  Average Backorder of Component D at all Safety Stock and Demand Variability Levels across Lead-Time in 

Days 
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Figure 5.6.4 for component D shows somewhat less variability than Figure 5.6.3 (component 

C).  DV10-SS0 and DV15-SS20 appear similar at low lead-times but diverge at high lead-times. 

 

 
Figure 5.6.5:  Average Backorder of Component E at all Safety Stock and Demand Variability Levels across Lead-Time in 

Days 

Figure 5.6.5 for component E shows somewhat less variability than Figure 5.6.3 (component 

C) but more variability than 5.6.4 (component D).  The added variability likely stems from the joint 

requirements by both end products for components C and E.  Yet again, DV10-SS0 and DV15-SS20 

appear to be similar at low lead-times but diverge at high lead-times. 

 

 
Figure 5.6.6:  Average Backorder of Component F at all Safety Stock and Demand Variability Levels across Lead-Time in 

Days 
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Figure 5.6.6 for component F shows somewhat less variability than Figures 5.6.3 and 5.6.5 

(component C and E) and similar variability to 5.6.4 (component D).  The added variability likely 

stems from the joint requirements by both end products for components C and E.  Yet again, DV10-

SS0 and DV15-SS20 appear to be similar at low lead-times but diverge at high lead-times. 

The results show similar patterns for both end products and the component parts.  For 

instance, both components and end products show that DV10-SS20 (low demand variability and 

high safety stock) consistently performs the best in terms of backorders (i.e., has the lowest average 

backorder levels at each lead-time) while DV15-SS0 (high demand variability and low safety stock) 

performs the worst.  For both end products and components, the treatment levels DV10-SS0 and 

DV15-SS20 show nearly identical results at low lead-time levels with some divergence at higher lead-

times.  In addition, components C and E show higher overall variability in terms of trend changes 

and spreads at each treatment level when compared to components D and F.  The shared 

requirements for both C and E in end products A and B represent the most likely explanation for the 

difference in behavior of the different components. 

5.7 – Conclusions about Backorders 
 

One of the most important notes on backorders occurs in Chapter 4:  backorders exceed 

average demand after 21-24 days of lead-time for both end products.  Chapter 5 displays how 

demand variability causes interesting convergence in component and end product backorder levels 

at the longest investigated lead-times.  On the other hand, Chapter 5 also displays how safety stock 

levels have a nearly constant impact on average backorder levels for both components and end 

products.   

The experiment demonstrates that longer lead-times tend to lead to higher average 

backorder levels.  Higher levels of safety stock help mitigate the average backorder levels by a 

relatively constant amount.  When analyzed together as treatment combinations, the simulation 

shows that high demand variability and low safety stocks lead to the highest average backorder 

levels at every lead-time while low demand variability and high safety stocks do the opposite.  

Interestingly, low safety stock with high demand variability and high safety stock with high demand 

variability appear to yield roughly the same overall average backorder levels. 
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In quantitative terms, average component and end product backorders often grow by 300% 

or more as lead-time moves from seven to forty-two days.  For instance, the average backorder level 

for end product A with demand variability 10 and safety stock of 20% of gross daily component 

requirements grows from an average backorder level of 31 units per day at a lead-time of seven 

days to 128 units at a forty-two day lead-time – a 410% increase in average backorders due to lead-

time. 

In sum, manufacturers in relatively high demand variability industries do face even more 

potential of backorders, but the pattern shows a strongly diminishing rate of backorder growth as 

lead-time increases.  Moreover, safety stocks do appear to help mitigate overall average backorder 

levels by an approximately constant amount no matter the length of the lead-time.  Thus, 

companies may be able to set safety stock levels independently of lead-time if they face similar 

conditions to those modeled (e.g., no lost orders, MRP freezes for the length of the lead-time, etc.). 
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6 - Analysis of Ending Inventories 
 

As noted in Chapter 4, average ending inventories for a jointly, asymmetrically required 

component are nearly identical to the average ending inventories of a component required for only 

one end product.  Chapter 6 will investigate whether safety stock, demand variability or simple 

random error causes the observed result.  Chapter 6 will also display the impacts of demand 

variability and safety stock levels on ending inventories for end products as well as components. 

6.1 - Lead-Time Impact on End Products and Components 
 

The general pattern observed in Chapter 4 shows that ending inventories grow as a function 

of lead-time for both end products and components.  The following sections breakdown the impacts 

of demand variability and safety stocks on ending inventory levels at the lead-times from seven to 

forty-two days. 

6.2 - Demand Variance Impact on Components Across Safety Stock Levels 
 

Figures 6.2.1 through 6.2.4 display the average ending inventory level per day for 

components C, D, E and F.  In each graph, the two trend lines show the changes in trend due to end 

product demand variability at standard deviations 10 and 15.  End product demand variability 

directly impacts component demand as shown in the BOM (see section 3.1). 

  

 

Figure 6.2.1:  Average Ending Inventory of Component C at Demand Variability 10 and 15 across Lead-Time in Days 
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Figure 6.2.2:  Average Ending Inventory of Component D at Demand Variability 10 and 15 across Lead-Time in Days 

 

 

Figure 6.2.3:  Average Ending Inventory of Component E at Demand Variability 10 and 15 across Lead-Time in Days 

 

 

Figure 6.2.4:  Average Ending Inventory of Component F at Demand Variability 10 and 15 across Lead-Time in Days 
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Figures 6.2.1 through 6.2.4 all display the same general pattern.  At a lead-time of seven 

days, the difference in average ending inventory due to demand variability level is very small.  As 

lead-time grows, the difference between the average ending inventory due to changes demand 

variability grows at every lead-time level.  While both demand variability 10 and 15 show continued 

acceleration in the growth of average ending inventory, demand variability 15 shows a much faster 

rate of acceleration.  For example, the average ending inventory of component F grew from 113 at a 

seven day lead-time to 537 units at a forty-two day lead-time at a demand variability of 10.  At 

demand variability 15, the average ending inventory of component F grows from 153 units at a 

seven day lead-time to 871 units at a forty-two day lead-time.  In percentage terms, average ending 

inventory grows by 376% and 469% for demand variability 10 and 15, respectively. 

While the present data cannot demonstrate whether the growth rate is exponentially 

growing forever, the pattern within the investigated seven to forty-two day lead-time certainly 

indicates worsening inventory levels as a function of lead-time.  High demand variability simply 

exacerbates an already severe inventory growth problem. 

6.3 - Safety Stock Impact on Components across Demand Variability Levels 
 
Figures 6.2.1 through 6.2.4 display the average ending inventory level per day for components C, D, 

E and F at each safety stock levels of 0% and 20% of average gross daily requirements. 

 

 

Figure 6.3.1:  Average Ending Inventory of Component C at Safety Stocks 0% and 20% of Gross Daily Requirements  
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Figure 6.3.2:  Average Ending Inventory of Component D at Safety Stocks 0% and 20% of Gross Daily Requirements  

 

 

Figure 6.3.3:  Average Ending Inventory of Component E at Safety Stocks 0% and 20% of Gross Daily Requirements  

 

 

Figure 6.3.4:  Average Ending Inventory of Component F at Safety Stocks 0% and 20% of Gross Daily Requirements  
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Safety stock appears to generate a constant increase in average ending inventory at every 

level of lead-time.  Average backorder levels show a similar magnitude reduction due to increased 

levels of safety stock in section 5.5.  Of course, the impact of increased safety stock is an increase in 

component inventory levels, which directly lowers the chance of a backorder for the component—

the classic cost trade-off between inventory and backorders/lost sales. 

In contrast to average ending inventory pattern of divergence at different levels of demand 

variability seen in section 6.2, the average ending inventory levels at each safety stock level neither 

converge nor diverge.  Once again, demand variability causes different rates of growth at different 

lead-times while safety stock has a nearly constant effect at each lead-time. 

6.4 – Ending Inventory Analysis for Components 
 

Figures 6.4.1 through 6.4.4 graphically display impacts on backorders due to changes in both 

demand variability and safety stock level combinations. 

 
 

 

Figure 6.4.1:  Average Ending Inventory of Component C at all Safety Stock and Demand Variability Levels across 

 Lead-Time in Days 
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Figure 6.4.2:  Average Ending Inventory of Component D at all Safety Stock and Demand Variability Levels across 

Lead-Time in Days 

 

 

Figure 6.4.3:  Average Ending Inventory of Component E at all Safety Stock and Demand Variability Levels across 

 Lead-Time in Days 
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Figure 6.4.4:  Average Ending Inventory of Component F at all Safety Stock and Demand Variability Levels across 

Lead-Time in Days 

 

Unlike the average backorder levels, which show convergence of some treatment levels, the 

ending inventories display no such convergence.  In fact, all ending inventories grow as lead-time 

grows.  The difference is one of growth rate.  Demand variability appears to be a major driving force 

behind the growth rate of ending inventory levels no matter the safety stock level.  Safety stock 

does appear to provide a buffer but only by a roughly constant amount.  Hence, once again, safety 

stock determination appears to be somewhat independent of lead-time under the simulation’s 

assumptions. 

6.5 – Conclusions about Ending Inventories 
 

The results of Chapters 5 and 6 distinctly show the trade-off between ending inventories 

and backorders.  While backorders show diminishing growth rates as a function of lead-time, the 

ending inventories show the opposite trend.  Ending inventories consistently grow as a function of 

lead-time regardless of safety stock levels or demand variability.  Increased safety stock and demand 

variability merely increases the growth of ending inventory.  As noted in section 6.4, the demand 

variability directly causes accelerated growth rates of ending inventory while safety stock adds a 

roughly constant amount at each level of lead-time. 

Quantitatively, component average ending inventories often grow by 400% or more as lead-

time grows.  For instance, the average ending inventory for component C with demand variability 10 
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and safety stock of 0% of gross daily component requirements grows from an average ending 

inventory level of 134 units per day at a lead-time of seven days to 699 units at a forty-two day lead-

time – a 422% increase in average ending inventory due to lead-time. 

In sum, manufacturers in relatively high demand variability industries do face even more 

potential of high ending inventories.  Unlike the average backorder levels of Chapter 5, the average 

ending inventory levels do not diminish in growth rate.  To the contrary, average ending inventory 

shows a pattern of accelerating growth as a function of increasing lead-times.  Additionally, safety 

stocks only increase the average ending inventory by a relatively constant amount at each lead-time 

level.  Thus, once again, companies may be able to set safety stock levels independently of lead-time 

if they face similar conditions to those modeled (e.g., no lost orders, MRP freezes for the length of 

the lead-time, etc.). 
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7 - Formal Statistical Analysis of Lead-Time, Demand Variability and 

Safety Stock Main Effects  
 

Chapters 4 through 6 of this research focus on the practical meaning of the simulation 

results.  Chapter 7 focuses on the statistical significance of the simulation’s main effects experiment.  

In each of the following sections, an analysis of the statistically significant results appears as output 

from JMP (a JAVA based program from the SAS Corporation).  

7.1 – Overall Model Analysis – Significant Effects and Interactions 
 

Before each least-squares means level can be examined thoroughly, the full model with all 

possible interactions must be checked.  Section 7.1 details the full factorial ANOVA models for each 

response from backorders of end products through ending inventories of components.  In each case, 

a full factorial model shows the overall results followed by a reduced model with insignificant effects 

removed.  Interactions without highly significant p-values (i.e., p-values < 0.001) are removed. 

7.1.1 – Backorder of End Product A 
 

The full model adjusted R2, F-statistic and individual significance tests appear in figure 

7.1.1.1. 

 

 

Figure 7.1.1.1:  Backorder of End Product A Fit and Effects Significance Full Model 

 

The adjusted R2 of 97.8% and F-statistic of 239.83 with accompanying p-value < 0.0001 

indicate that at least some factors are highly significant in explaining the variability in average 

backorder level for end product A.  The individual effect F-tests show that demand variability, lead-

time and safety stock are all highly statistically significant with p-values less than 0.0001.  The 

interaction of demand variability with lead-time is also fairly significant with a p-value of 0.0062 but 
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not enough for inclusion against a required p-value of less than 0.001.  A reduced model appears in 

Figure 7.1.1.2. 

 

 

Figure 7.1.1.2:  Backorder of End Product A Fit and Effects Significance Reduced Model 

 

The adjusted R2 barely changed while the F-statistic improved.  The reduced model appears 

to be highly statistically significant for explaining variability in average backorders for end product A. 

7.1.2 – Backorder of End Product B 
 
The full model adjusted R2, F-statistic and individual significance tests appear in figure 7.1.2.1. 

 

  

Figure 7.1.2.1:  Backorder of End Product B Fit and Effects Significance Full Model 

 

The adjusted R2 of 96.2% and F-statistic of 133.6 with accompanying p-value < 0.0001 

indicate that at least some factors are highly significant in explaining the variability in average 

backorder level for end product B.  The individual effect F-tests show that demand variability, lead-

time and safety stock are all highly statistically significant with p-values less than 0.0001.  None of 
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the interaction effects show any statistically significant effects.  A reduced model appears in Figure 

7.1.2.2. 

 

  

Figure 7.1.2.2:  Backorder of End Product B Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and F-statistic improved.  The reduced model appears to be highly 

statistically significant for explaining variability in average backorders for end product B. 

7.1.3 – Backorder and Ending Inventory of Component C 
 

The backorder’s full model adjusted R2, F-statistic and individual significance tests for 

average backorder of component C appear in figure 7.1.3.1. 

 

   

Figure 7.1.3.1:  Backorder of Component C Fit and Effects Significance Full Model 

 

The adjusted R2 of 94.3% and F-statistic of 86.5 with accompanying p-value < 0.0001 indicate 

that at least some factors are highly significant in explaining the variability in average backorder 

level for component C.  The individual effect F-tests show that demand variability, lead-time and 

safety stock are all highly statistically significant with p-values less than 0.0001.  The interaction of 
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demand variability with lead-time is also statistically significant with a p-value of 0.0006.  A reduced 

model appears in Figure 7.1.3.2. 

 

  

Figure 7.1.3.2:  Backorder of Component C Fit and Effects Significance Reduced Model 

 

The adjusted R2 reduced slightly while the F-statistic improved.  All factors and interactions 

appear to be highly statistically significant for explaining variability in average backorders for 

component C. 

 The ending inventory full model adjusted R2, F-statistic and individual significance tests for 

average ending inventory of component C appear in figure 7.1.3.3. 

 

   

Figure 7.1.3.3:  Ending Inventory of Component C Fit and Effects Significance Full Model 

 

The adjusted R2 of 97.3% and F-statistic of 192.3 with accompanying p-value < 0.0001 indicate that 

at least some factors are highly significant in explaining the variability in average ending inventory 

level for component C.  The individual effect F-tests show that demand variability, lead-time and 

safety stock are all highly statistically significant with p-values less than 0.0001.  The interaction of 
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demand variability with lead-time is also statistically significant with a p-value of less than 0.0001.  A 

reduced model appears in Figure 7.1.3.4. 

 

   

Figure 7.1.3.4:  Ending Inventory of Component C Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All factors and interactions in the reduced model 

appear to be highly statistically significant for explaining variability in average ending inventory for 

component C. 

7.1.4 – Backorder and Ending Inventory of Component D 
 

The backorders full model adjusted R2, F-statistic and individual significance tests for 

average backorder of component D appear in figure 7.1.4.1. 

 

   

Figure 7.1.4.1:  Backorder of Component D Fit and Effects Significance Full Model 

 

The adjusted R2 of 95.1% and F-statistic of 101.3 with accompanying p-value < 0.0001 indicate that 

at least some factors are highly statistically significant in explaining the variability in average 

backorder level for component D.  The individual effect F-tests show that demand variability, lead-

time and safety stock are all highly statistically significant with p-values less than 0.0001.  The 



www.manaraa.com

54 
 

 
 

interaction of demand variability with lead-time is also statistically significant with a p-value of 

0.0001.  A reduced model appears in Figure 7.1.4.2. 

 

   

Figure 7.1.4.2:  Backorder of Component D Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All remaining factors and interactions appear to 

be highly statistically significant for explaining variability in average backorders for component D. 

The ending inventory full model adjusted R2, F-statistic and individual significance tests for 

average ending inventory of component D appear in figure 7.1.4.3. 

 

 

Figure 7.1.4.3:  Ending Inventory of Component D Fit and Effects Significance Full Model 

 

The adjusted R2 of 97.4% and F-statistic of 193.9 with accompanying p-value < 0.0001 

indicate that at least some factors are highly significant in explaining the variability in average 

ending inventory level for component D.  The individual effect F-tests show that demand variability, 

lead-time and safety stock are all highly statistically significant with p-values less than 0.0001.  The 

interaction of demand variability with lead-time is also statistically significant with a p-value of less 

than 0.0001.  A reduced model appears in Figure 7.1.4.4. 
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Figure 7.1.4.4:  Ending Inventory of Component D Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All factors and interactions in the 

reduced model appear to be highly statistically significant for explaining variability in average ending 

inventory for component D. 

7.1.5 – Backorder and Ending Inventory of Component E 
 

The backorder’s full model adjusted R2, F-statistic and individual significance tests for 

average backorder of component E appear in figure 7.1.5.1. 

 

  

Figure 7.1.5.1:  Backorder of Component E Fit and Effects Significance Full Model 

 

The adjusted R2 of 93.0% and F-statistic of 70.0 with accompanying p-value < 0.0001 indicate 

that at least some factors are highly statistically significant in explaining the variability in average 

backorder level for component E.  The individual effect F-tests show that demand variability, lead-

time and safety stock are all highly statistically significant with p-values less than 0.0001.  No 

interaction effects show statistically significant results.  A reduced model appears in Figure 7.1.5.2. 
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Figure 7.1.5.2:  Backorder of Component E Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All remaining factors and interactions 

appear to be highly statistically significant for explaining variability in average backorders for 

component E. 

The ending inventory full model adjusted R2, F-statistic and individual significance tests for 

average ending inventory of component E appear in figure 7.1.5.3. 

 

  

Figure 7.1.5.3:  Ending Inventory of Component E Fit and Effects Significance Full Model 

 

The adjusted R2 of 97.7% and F-statistic of 225.4 with accompanying p-value < 0.0001 

indicate that at least some factors are highly significant in explaining the variability in average 

ending inventory level for component E.  The individual effect F-tests show that demand variability, 

lead-time and safety stock are all highly statistically significant with p-values less than 0.0001.  The 

interaction of demand variability with lead-time is also statistically significant with a p-value of less 

than 0.0001.  A reduced model appears in Figure 7.1.5.4. 
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Figure 7.1.5.4:  Ending Inventory of Component E Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All factors and interactions in the 

reduced model appear to be highly statistically significant for explaining variability in average ending 

inventory for component E. 

7.1.6 – Backorder and Ending Inventory of Component F 
 

The backorder’s full model adjusted R2, F-statistic and individual significance tests for 

average backorder of component F appear in figure 7.1.6.1. 

 

  

Figure 7.1.6.1:  Backorder of Component F Fit and Effects Significance Full Model 

 

The adjusted R2 of 88.1% and F-statistic of 39.7 with accompanying p-value < 0.0001 indicate 

that at least some factors are highly statistically significant in explaining the variability in average 

backorder level for component F.  Interestingly, component F average backorder represents the only 

response to achieve less than a 90% adjusted R2.  The individual effect F-tests show that demand 

variability, lead-time and safety stock are all highly statistically significant with p-values less than 

0.0001.  No interactions proved statistically significant.  A reduced model appears in Figure 7.1.6.2. 
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Figure 7.1.6.2:  Backorder of Component F Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All remaining factors and interactions 

appear to be highly statistically significant for explaining variability in average backorders for 

component F. 

The ending inventory full model adjusted R2, F-statistic and individual significance tests for 

average ending inventory of component F appear in figure 7.1.6.3. 

 

 

Figure 7.1.6.3:  Ending Inventory of Component F Fit and Effects Significance Full Model 

 

The adjusted R2 of 98.1% and F-statistic of 265.34 with accompanying p-value < 0.0001 

indicate that at least some factors are highly significant in explaining the variability in average 

ending inventory level for component F.  In contrast to the low adjusted R2 for the average 

backorder levels of component F, the adjusted R2 for the average ending inventory for component F 

is among the highest of all adjusted R2 values.  The individual effect F-tests show that demand 

variability, lead-time and safety stock are all highly statistically significant with p-values less than 
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0.0001.  The interaction of demand variability with lead-time is also statistically significant with a p-

value of less than 0.0001.  A reduced model appears in Figure 7.1.6.4. 

 

 

Figure 7.1.6.4:  Ending Inventory of Component F Fit and Effects Significance Reduced Model 

 

Both the adjusted R2 and the F-statistic improved.  All factors and interactions in the 

reduced model appear to be highly statistically significant for explaining variability in average ending 

inventory for component F. 

7.1.7 – Conclusions from Full Models 
 

Every response shows statistically significant results.  In only one model did the adjusted R2 

fall below 90%--a surprisingly high figure given the unaccounted for error due to poor forecasting.  

The reduced models all contained the main effects of demand variability, lead-time and safety stock.   

On the other hand, the only interaction term that shows significant results in some of the 

models is demand variability by lead-time.  The interaction of demand variability by lead-time is 

observed by the diverging lines in the graphics of sections 5.2 and 6.2.  In most cases, the interaction 

effect of demand variability by lead-time has smaller F-statistics than the main effects.  

Interpretation of the interaction is actually fairly simple.  The interaction shows that while 

backorders and ending inventory grow as a function of lead-time, they actually grow faster when 

demand variability is high than when demand variability is low (i.e., at demand variability has a 

standard deviation 15 instead of 10). 

7.2 – Significant Effects Impact on End Products 
 

Lead-time, demand variability and safety stock level all prove highly statistically significant in 

helping to explain variability in average backorder levels and average ending inventory levels for 
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every end product and component (see section 7.1).  Each of the following subsections of section 

7.2 contains a breakdown of the least-squares means (i.e., the average impact on the mean due to 

each experimental factor) for each response backorder and ending inventory level of end products 

and components. 

7.2.1 – Backorder of End Product A 
 

Statistical analysis of average backorders of end product A shows that lead-time, demand 

variability and safety stock are all highly statistically significant.  The interaction of demand 

variability and lead-time is also somewhat statistically significant but not enough for inclusion in this 

discussion. 

Lead-time LSMeans for end product A appear in Figure 7.2.1.1. 

 

 

Figure 7.2.1.1:  Lead-time LSMeans of Backorders for End Product A 

 

The Tukey Honestly Significant Difference (Tukey HSD) shows that every level of lead-time is 

statistically significantly different from all others with an overall alpha error rate of 0.05 or 5%.  The 

increase in average backorder level due to lead-time grows at a diminishing rate. 

Demand variability LSMeans for end product A appear in Figure 7.2.1.2. 
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Figure 7.2.1.2:  Demand Variability LSMeans of Backorders for End Product A 

 

As already shown by the F-statistic in section 7.1.1, the different levels of demand variability 

are statistically significantly different.  On average, a move from demand variability 10 to demand 

variability 15 causes approximately a 15 unit jump in the average backorders of end product A. 

Safety stock LSMeans for end product A appear in Figure 7.2.1.3. 

 

 

Figure 7.2.1.3:  Safety Stock LSMeans of Backorders for End Product A 

 

Once again, as already shown by the F-statistic in section 7.1.1, the different levels of safety 

stock are statistically significantly different.  On average, moving from a safety stock of 0% to 20% of 

gross daily component requirements causes an approximately 14 unit drop in the average 

backorders of end product A. 

Overall, the LSMeans for lead-time have by far the largest impact on average backorders of 

end product A as shown by the dramatically increasing LSMeans at each level of lead-time.  Demand 

variability and safety stock have relatively similar magnitude LSMeans impacts on the average 

backorder level of end product A. 
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7.2.2 – Backorder of End Product B 
 

Examination of average backorders of end product B shows that lead-time, demand 

variability and safety stock are all highly statistically significant.  No interactions are close to 

statistically significant. 

Lead-time LSMeans for end product B appear in Figure 7.2.2.1. 

 

 

Figure 7.2.2.1:  Lead-time LSMeans of Backorders for End Product B 

 

The Tukey Honestly Significant Difference (Tukey HSD) shows that every level of lead-time is 

statistically significantly different from all others with an overall alpha error rate of 0.05 or 5%.  As is 

the case for end product A, the increase in average backorder level due to lead-time grows at a 

diminishing rate for end product B. 

Demand variability LSMeans for end product B appear in Figure 7.2.2.2. 

 

 

Figure 7.2.2.2:  Demand Variability LSMeans of Backorders for End Product B 
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As already shown by the F-statistic in section 7.1.2, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 12 unit jump in the average backorders of end product B. 

Safety stock LSMeans for end product B appear in Figure 7.2.2.3. 

 

Figure 7.2.2.3:  Safety Stock LSMeans of Backorders for End Product B 

 

Once again, as already shown by the F-statistic in section 7.1.2, the different levels of safety 

stock are statistically significantly different.  On average, moving from a safety stock of 0% to 20% of 

gross daily component requirements causes approximately a 13 unit drop in the average backorders 

of end product B. 

In sum, the LSMeans for lead-time have by far the largest impact on average backorders for 

end product B as shown by the dramatically increasing LSMeans at each level of lead-time.  Demand 

variability and safety stock have similar magnitude LSMeans impacts on the average backorder level 

of end product B. 

7.3 – Significant Effects Impact on Components 

7.3.1 – Backorder of Component C 
 

Analysis of average backorders of component C shows that lead-time, demand variability 

and safety stock are all highly statistically significant.  Moreover, the interaction between demand 

variability and lead-time is statistically significant. 

Lead-time LSMeans for component C appear in Figure 7.3.1.1. 
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Figure 7.3.1.1:  Lead-time LSMeans of Backorders for Component C 

 

Even under a Tukey Honestly Significant Difference (Tukey HSD), almost every level of lead-

time is statistically significantly different from all others with an overall alpha error rate of 0.05 or 

5%.  At the highest lead-times of 35 and 42 days, the LSMeans are too close to be statistically 

significantly different.  As is the case for end products A and B, the increase in average backorder 

level due to lead-time grows at a diminishing rate for component C. 

Demand variability LSMeans for component C appear in Figure 7.3.1.2. 

 

 

Figure 7.3.1.2:  Demand Variability LSMeans of Backorders for Component C 

 



www.manaraa.com

65 
 

 
 

As already shown by the F-statistic in section 7.1.3, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 61 unit jump in the average backorders of component C. 

Safety stock LSMeans for component C appear in Figure 7.3.1.3. 

 

 

Figure 7.3.1.3:  Safety Stock LSMeans of Backorders for Component C 

 

As expected due to the F-statistic in section 7.1.3, the different levels of safety stock are 

statistically significantly different.  On average, moving from a safety stock of 0% to 20% of gross 

daily component requirements causes approximately a 72 unit drop in the average backorders of 

component C. 

Demand variability and lead-time interactions LSMeans for component C appear in Figure 

7.3.1.4. 
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Figure 7.3.1.4:  DV*LT LSMeans of Backorders for Component C 

 

Not all levels of the interaction combinations are statistically significantly different.  At high 

levels of lead-time, the LSMeans tend to become too close to distinguish statistically.  In contrast, 

lower levels of lead-time show statistically significant differences regardless of demand variability.  

In other words, lead-time is the prime driving force in the difference of the LSMeans while demand 

variability plays some role in changing the LSMeans when the lead-time sits in the range of 21-42 

days (also seen by the differing slopes past 21 days in the LSMeans plot).  Demand variability plays 

less of a role in increasing the LSMean backorder level at higher levels of lead-time. 

As was the case with the end products, lead-time has by far the largest LSMeans impact on 

average backorders for component C as shown by the dramatically increasing LSMeans at each level 

of lead-time other than the highest two lead-time levels.  Demand variability and safety stock have 

somewhat similar magnitude LSMeans impacts on the average backorder level of component C.  

Interaction between demand variability and lead-time does play a statistically significant role in 

accounting for the variability in average backorder levels.  The LSMeans plot in figure 7.3.1.4 (and 
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figure 5.3.1) shows as lead-time grows the slope of the higher demand variability curve decreases at 

a more rapid rate than the slope of the low demand variability curve.  

7.3.2 – Ending Inventory of Component C 
 

Analysis of average ending inventory of component C shows that lead-time, demand 

variability and safety stock are all highly statistically significant.  Moreover, the interaction between 

demand variability and lead-time is statistically significant. 

Lead-time LSMeans for component C appear in Figure 7.3.2.1. 

  

 

Figure 7.3.2.1:  Lead-time LSMeans of Ending Inventory for Component C 

 

The Tukey HSD shows that every level of lead-time is statistically significantly different from 

all others with an overall alpha error rate of 0.05 or 5%.  The increase in average ending inventory 

level due to lead-time grows at a nearly constant rate for component C. 

Demand variability LSMeans for component C appear in Figure 7.3.2.2. 
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Figure 7.3.2.2:  Demand Variability LSMeans of Ending Inventory for Component C 

 

As already shown by the F-statistic in section 7.1.3, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 216 unit jump in the average ending inventory of component 

C. 

Safety stock LSMeans for component C appear in Figure 7.3.2.3. 

 

 

Figure 7.3.2.3:  Safety Stock LSMeans of Ending Inventory for Component C 

 

As expected due to the F-statistic in section 7.1.3, the different levels of safety stock are 

statistically significantly different.  On average, moving from a safety stock of 0% to 20% of 

component requirements causes an approximately 88 unit increase in the average ending inventory 

of component C. 

Demand variability and lead-time interactions LSMeans for component C appear in Figure 

7.3.2.4. 
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Figure 7.3.2.4:  DV*LT LSMeans of Ending Inventory for Component C 

 

Not all levels of the interaction combinations are statistically significantly different.  The lack 

of Tukey HSD differences appears to scatter throughout the interaction levels.  In other words, lead-

time remains the prime driving force in the difference of the LSMeans.  The interaction really shows 

that as lead-time grows, higher demand variability leads to a faster overall LSMean growth rate. 

Once again, as is the case with the end products, lead-time has by far the largest LSMeans 

impact on average ending inventory for a component as shown by the dramatically increasing 

LSMeans at each level of lead-time.  Demand variability and safety stock have somewhat similar 

magnitude LSMeans impacts on the average ending inventory level of component C.  Interaction 

between demand variability and lead-time does play a statistically significant role in accounting for 

the variability in average ending inventory levels.  The LSMeans plot in figure 7.3.2.4 (and figure 

6.2.1) shows as lead-time grows the slope of the higher demand variability curve increases at a more 

rapid rate than the slope of the low demand variability curve.  In other words, increased demand 

variability plays more of a role in increasing the LSMeans at higher levels of lead-time. 
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7.3.3 – Backorder of Component D 
 

Analysis of average backorders of component D shows that lead-time, demand variability 

and safety stock are all highly statistically significant.  Moreover, the interaction between demand 

variability and lead-time is statistically significant. 

Lead-time LSMeans for component D appear in Figure 7.3.3.1. 

 

 

Figure 7.3.3.1:  Lead-time LSMeans of Backorders for Component D 

 

The Tukey HSD shows that every level of lead-time is statistically significantly different from 

all others with an overall alpha error rate of 0.05 or 5%.  As is the case for component C, the 

increase in average backorder level due to lead-time grows at a diminishing rate for component D. 

Demand variability LSMeans for component D appear in Figure 7.3.3.2. 
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Figure 7.3.3.2:  Demand Variability LSMeans of Backorders for Component D 

 

As already shown by the F-statistic in section 7.2.4, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 9 unit jump in the average backorders of component D. 

Safety stock LSMeans for component D appear in Figure 7.3.3.3. 

 

 

Figure 7.3.3.3:  Safety Stock LSMeans of Backorders for Component D 

 

As expected due to the F-statistic in section 7.2.4, the different levels of safety stock are 

statistically significantly different.  On average, moving from a safety stock of 0% to 20% of gross 

daily component requirements causes an approximately 8 unit drop in the average backorders of 

component D. 

Demand variability and lead-time interactions LSMeans for component D appear in Figure 

7.3.3.4. 

 



www.manaraa.com

72 
 

 
 

 

Figure 7.3.3.4:  DV*LT LSMeans of Backorders for Component D 

 

Not all levels of the interaction combinations are statistically significantly different—a 

similar result to that seen for component C.  At high levels of lead-time, the LSMeans tend to 

become too close to distinguish statistically under a Tukey HSD.  In contrast, lower levels of lead-

time show statistically significant differences regardless of demand variability.  In other words, lead-

time is the prime driving force in the difference of the LSMeans while demand variability plays some 

role in changing the LSMeans when the lead-time sits in the range of 21-42 days (also seen by the 

differing slopes past 21 days in the LSMeans plot).  In other words, demand variability plays less of a 

role in increasing the LSMean backorder level at higher levels of lead-time. 

In sum, lead-time once again has by far the largest LSMeans impact on average backorders 

for component D as shown by the dramatically increasing LSMeans at each level of lead-time.  

Demand variability and safety stock have fairly different magnitude LSMeans impacts on the average 

backorder level of component D.  In fact, demand variability appears to cause a nearly 2.5 fold 

greater rise in the LSMeans of ending inventory levels for component C when compared to the 

LSMeans impact of safety stock.  Interaction between demand variability and lead-time does play a 
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statistically significant role in accounting for the variability in average backorder levels of component 

D.  The LSMeans plot in figure 7.3.3.4 (and figure 5.3.2) displays that the slope of the higher demand 

variability curve decreases at a more rapid rate than the slope of the low demand variability curve as 

lead-time grows.  

7.3.4 – Ending Inventory of Component D 
 

Analysis of average ending inventory of component D shows that lead-time, demand 

variability and safety stock are all highly statistically significant.  Moreover, the interaction between 

demand variability and lead-time is statistically significant. 

Lead-time LSMeans for component D appear in Figure 7.3.4.1. 

  

  

 

Figure 7.3.4.1:  Lead-time LSMeans of Ending Inventory for Component D 

 

The Tukey HSD shows that every level of lead-time is statistically significantly different from 

all others with an overall alpha error rate of 0.05 or 5%.  The increase in average ending inventory 

level due to lead-time grows at a nearly constant or slightly increasing rate for component D. 

Demand variability LSMeans for component D appear in Figure 7.3.4.2. 
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Figure 7.3.4.2:  Demand Variability LSMeans of Ending Inventory for Component D 

 

As already shown by the F-statistic in section 7.2.3, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 42 unit increase in the average ending inventory of component 

D.  

Safety stock LSMeans for component D appear in Figure 7.3.4.3. 

 

 

Figure 7.3.4.3:  Safety Stock LSMeans of Ending Inventory for Component D 

 

As expected due to the F-statistic in section 7.2.3, the different levels of safety stock are 

statistically significantly different.  On average, moving from a safety stock of 0% to 20% of gross 

daily component requirements causes an approximately 12 unit jump in the average ending 

inventory of component D. 

Demand variability and lead-time interactions LSMeans for component D appear in Figure 

7.3.4.4. 
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Figure 7.3.4.4:  DV*LT LSMeans of Ending Inventory for Component D 

 

Not all levels of the interaction combinations are statistically significantly different.  The lack 

of Tukey HSD differences appears to scatter throughout the interaction levels.  In other words, lead-

time remains the prime driving force in the difference of the LSMeans.  The interaction does display 

that as lead-time grows, higher demand variability leads to a faster overall LSMean growth rate. 

As is the case for component C’s ending inventories, lead-time has by far the largest 

LSMeans impact on average ending inventory for component D as shown by the dramatically 

increasing LSMeans at each level of lead-time.  Analysis shows that demand variability has 

approximately double the impact of safety stock on the LSMeans of ending inventory of component 

D.  Only end product A requires component D (see section 3.1).  Apparently, the demand variability 

of end products has a larger impact than safety stock buffers on ending inventories for the uniquely 

required component.  Interaction between demand variability and lead-time does play a statistically 

significant role in accounting for the variability in average ending inventory levels.  The LSMeans plot 

in figure 7.3.4.4 (and figure 6.2.2) clearly displays that higher demand variability (i.e., demand 
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variability 15 instead of 10) leads to accelerating ending inventory growth as lead-time grows.  In 

other words, increased demand variability plays an increasing role in accelerating the growth of the 

LSMeans at higher levels of lead-time. 

7.3.5 – Backorder of Component E 
 

Analysis of average backorders of component E shows that lead-time, demand variability 

and safety stock are all highly statistically significant.  Further, no interaction effects appear to be 

statistically significant. 

Lead-time LSMeans for component E appear in Figure 7.3.5.1. 

 

 

 

Figure 7.3.5.1:  Lead-time LSMeans of Backorders for Component E 

 

The Tukey HSD shows that almost every level of lead-time is statistically significantly 

different from all others with an overall alpha error rate of 0.05 or 5%.  At the highest lead-times of 

35 and 42 days, the Tukey HSD fails to find a statistically significant difference.  In other words, the 

growth rate of average backorders due to lead-time levels off too much for the LSMeans at the 

highest lead-times to show a statistically significant difference.  

Demand variability LSMeans for component E appear in Figure 7.3.5.2. 
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Figure 7.3.5.2:  Demand Variability LSMeans of Backorders for Component E 

 

As already shown by the F-statistic in section 7.2.5, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 45 unit increase in the average backorders of component E. 

Safety stock LSMeans for component E appear in Figure 7.3.5.3. 

 

 

Figure 7.3.5.3:  Safety Stock LSMeans of Backorders for Component E 

 

As expected due to the F-statistic in section 7.2.5, the different levels of safety stock are 

statistically significantly different.  On average, moving from a safety stock of 0% to 20% of gross 

daily component requirements causes approximately a 44 unit drop in the average backorders of 

component E. 

As has consistently been true for both the end products and other components, lead-time 

has by far the largest LSMeans impact on average backorders for component E.  Figure 7.3.5.1 

shows the increasing LSMeans at each level of lead-time other than the highest two lead-time levels.  
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Demand variability and safety stock have nearly identical magnitude LSMeans impacts on the 

average backorder level of component E. 

7.3.6 – Ending Inventory of Component E 
 

Analysis of average ending inventory of component E shows that lead-time, demand 

variability and safety stock are all highly statistically significant.  Moreover, the interaction between 

demand variability and lead-time is statistically significant. 

Lead-time LSMeans for component E appear in Figure 7.3.6.1. 

 

   

 

Figure 7.3.6.1:  Lead-time LSMeans of Ending Inventory for Component E 

 

The Tukey HSD shows that every level of lead-time is statistically significantly different from 

all others with an overall alpha error rate of 0.05 or 5%.  The increase in average ending inventory 

level due to lead-time grows at a nearly constant or slightly increasing rate for component E. 

Demand variability LSMeans for component E appear in Figure 7.3.6.2. 
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Figure 7.3.6.2:  Demand Variability LSMeans of Ending Inventory for Component E 

 

As already shown by the F-statistic in section 7.2.5, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 146 unit jump in the average ending inventory level of 

component E. 

Safety stock LSMeans for component E appear in Figure 7.3.6.3. 

 

 

Figure 7.3.6.3:  Safety Stock LSMeans of Ending Inventory for Component E 

 

As expected due to the F-statistic in section 7.2.5, the different levels of safety stock are 

statistically significantly different.  On average, moving from a safety stock of 0% to 20% of gross 

daily component requirements causes approximately a 56 unit increase in the average ending 

inventory level of component E. 

Demand variability and lead-time interactions LSMeans for component E appear in Figure 

7.3.6.4. 

 



www.manaraa.com

80 
 

 
 

  

Figure 7.3.6.4:  DV*LT LSMeans of Ending Inventory for Component E 

 

Interestingly, most interaction combinations are statistically significantly different.  The 

Tukey HSD differences appear throughout the interaction levels.  The interaction plot in Figure 

7.3.6.4 (and Figure 6.2.3) displays that as lead-time grows, higher demand variability leads to a 

faster overall LSMean growth rate. 

Once again, as is true for both components C and component D ending inventory levels, 

lead-time has by far the largest LSMeans impact on average ending inventory for component E as 

shown by the generally large increases in the LSMean ending inventory levels at each level of lead-

time.  Further, the analysis shows that demand variability causes more than double the impact of 

safety stock on the LSMeans of ending inventory for component E.  As seen in the ending inventories 

for other components, the demand variability of end products has a larger impact than safety stock 

buffers on ending inventories for required components.  As has been the case for other component 

parts, interaction between demand variability and lead-time does play a statistically significant role 

in accounting for the variability in average ending inventory levels.  The LSMeans plot in figure 
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7.3.6.4 (and figure 6.2.3) clearly displays that higher demand variability (i.e., demand variability 15 

instead of 10) leads to accelerating ending inventory growth as lead-time grows.  Yet again, 

increased demand variability plays a role in accelerating the growth of the LSMeans at higher levels 

of lead-time. 

7.3.7 – Backorder of Component F 
 

Analysis of average backorders of component F shows that lead-time, demand variability 

and safety stock are all highly statistically significant.  Further, no interaction effects appear to be 

statistically significant. 

Lead-time LSMeans for component F appear in Figure 7.3.7.1. 

 

 

 

Figure 7.3.7.1:  Lead-time LSMeans of Backorders for Component F 

 

The Tukey HSD shows that most levels of lead-time are statistically significantly different 

from other levels with an overall alpha error rate of 0.05 or 5%.  At the highest lead-times of 35 and 

42 days as well as 28 and 35 days, the Tukey HSD fails to find a statistically significant difference (i.e., 

the Tukey individual alpha error rate is too small to allow statistical significance for those pairs).  In 

other words, the growth rate of average backorders due to lead-time levels off too much for the 

LSMeans at the highest two pairs of lead-times to show a statistically significant difference.   Of 



www.manaraa.com

82 
 

 
 

course, as with all other average backorders of components and end products, the general pattern 

of the LSMeans plot is upward with a diminishing growth rate. 

Demand variability LSMeans for component F appear in Figure 7.3.7.2. 

 

 

Figure 7.3.7.2:  Demand Variability LSMeans of Backorders for Component F 

 

As already shown by the F-statistic in section 7.2.6, the different levels of demand variability 

are statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 33 unit increase in the average backorders of component F. 

Safety stock LSMeans for component F appear in Figure 7.3.7.3. 

 

 

Figure 7.3.7.3:  Safety Stock LSMeans of Backorders for Component F 

 

As expected due to the F-statistic in section 7.2.6, the different levels of safety stock are 

statistically significantly different.  On average, moving from a component safety stock of 0% to 20% 

of gross daily requirements causes approximately a 34 unit drop in the average backorders of 

component F. 

As has consistently been the true for both the end products and other components, lead-

time has by far the largest LSMeans impact on average backorders for component F.  Figure 7.3.4.1 
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shows the increasing LSMeans at each level of lead-time other than the highest two lead-time levels.  

Demand variability and safety stock have nearly identical LSMeans impacts on the average 

backorder level of component F. 

7.3.8 – Ending Inventory of Component F 
 

Analysis of average ending inventory of component F shows that lead-time, demand 

variability and safety stock are all highly statistically significant.  Moreover, the interaction between 

demand variability and lead-time is statistically significant. 

Lead-time LSMeans for component F appear in Figure 7.3.8.1. 

 

 

 

Figure 7.3.8.1:  Lead-time LSMeans of Ending Inventory for Component F 

 

The Tukey HSD shows that every level of lead-time is statistically significantly different from 

all others with an overall alpha error rate of 0.05 or 5%.  The increase in average ending inventory 

level due to lead-time grows at a nearly constant or slightly increasing rate for component F. 

Demand variability LSMeans for component F appear in Figure 7.3.8.2. 
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Figure 7.3.8.2:  Demand Variability LSMeans of Ending Inventory for Component F 

 

As already shown by the F-statistic in section 7.2.6, the different levels of demand variability are 

statistically significantly different.  On average, the move from demand variability 10 to demand 

variability 15 causes approximately a 179 unit increase in the average ending inventory level of 

component F. 

Safety stock LSMeans for component D appear in Figure 7.3.8.3. 

 

 

Figure 7.3.8.3:  Safety Stock LSMeans of Ending Inventory for Component F 

 

As expected due to the F-statistic in section 7.2.6, the different levels of safety stock are 

statistically significantly different.  On average, moving from a component safety stock of 0% to 20% 

of gross daily requirements causes an approximately 46 unit rise in the average ending inventory 

level of component F. 

Demand variability and lead-time interactions LSMeans for component F appear in Figure 

7.3.8.4. 
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Figure 7.3.8.4:  DV*LT LSMeans of Ending Inventory for Component F 

 

Most interaction combinations are statistically significantly different.  As is the case for most 

component ending inventory LSMean interaction levels, the insignificant Tukey HSD differences 

appear to scatter throughout the interaction levels.  The interaction plot in Figure 7.3.8.4 (and 

Figure 6.2.4) displays that as lead-time grows, higher demand variability leads to a faster overall 

LSMean growth rate. 

As is the case for components C, D and E ending inventory levels, lead-time has by far the 

largest LSMeans impact on average ending inventory for component F as shown by the generally 

large increases in the LSMean ending inventory levels at each level of lead-time.  Moreover, the 

output shows that demand variability has more than triple the impact of safety stock on the 

LSMeans of ending inventory for component F.  As seen in the ending inventories for other 

components, the demand variability on end products has a larger impact than safety stock buffers 

on ending inventories for required components.  Component F is similar to component C in that 

both components feed into end products A and B (see section 3.1 for details). 
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As has been the case for other component parts, interaction between demand variability 

and lead-time does play a statistically significant role in accounting for the variability in average 

ending inventory levels.  The LSMeans plot in figure 7.3.8.4 (and figure 6.2.4) clearly displays that 

higher demand variability (i.e., demand variability 15 instead of 10) leads to accelerating ending 

inventory growth as lead-time grows.  Once again, increased demand variability plays a role in 

accelerating the growth of the LSMeans at higher levels of lead-time. 

7.4 – Final Results of Statistical Examinations 
 

Every full model in section 7.1 shows statistically significant results for every response.  In 

each model, the main effect variables, lead-time, demand variability and safety stock, are 

statistically significant.  In some of the models, the interaction term of lead-time crossed with 

demand variability is also statistically significant even at an alpha error rate of 0.001.  In addition, all 

but one of the models displays an adjusted R2 well over 90%.  In other words, the models appear to 

do a very good job of explaining the variation in their respective responses—average ending 

inventories and backorders. 

Every model shows that the largest LSMeans impact on both average ending inventory 

levels and average backorder levels derives from lead-time.  At the highest levels of lead-time, the 

differences between LSMean levels sometimes lack significance in a Tukey HSD test.  The simulation 

models longer lead-times with higher standard deviations as discussed in section 3.6.  Hence, the 

likelihood of the larger random error’s causing lowered statistical significance was built into the 

model to keep validity high. 

Models for average backorder levels generally show similar magnitude LSMeans impacts 

due to changes in demand variability and safety stock level.  In contrast, models for average ending 

inventory levels generally show that demand variability has a 200%-300% greater impact on 

LSMeans than safety stock levels.  Chapters 5 and 6 note this pattern as a faster growth rate in the 

average ending inventories due to higher demand variability as opposed to nearly constant 

additions to the ending inventory due to higher safety stock levels – the same pattern that emerges 

from the interaction effects of demand variability with lead-time. 

Overall, lead-time appears to have the greatest impact on both backorders and ending 

inventory.  Demand variability and safety stock levels have different impacts depending on the 

response of interest.  High demand variability causes large growths in LSMeans of ending inventories 
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but relatively small growths in the LSMeans of average backorder levels.  High safety stocks tend to 

cause relatively small growth in the LSMeans of average ending inventories and commensurate 

decreases in average backorders. 

  



www.manaraa.com

88 
 

 
 

8 – Examining Zero Lead-Time Variability, Higher Levels of Safety 

Stock and Larger Batch Sizes 
 

Chapter 8 focuses on isolating the effects of zero lead-time variability, safety stocks at 40% 

of gross daily component requirements and different lot sizing rules with larger batch sizes.  Each of 

these factors goes beyond the scope of the original experiment.  The examination of each factor 

focuses on the practical perspective.  Factors are also checked statistically when feasible.  Full 

statistical analysis would require more runs at each factor/treatment level to understand the true 

impacts beyond the extremes investigated below. 

8.1 – Zero Lead-Time Variability 
 

To isolate the impact of the lead-time variability in the experiment, the simulation 

generated 12 extra runs with zero lead-time variability.  Safety stock is set to zero in every run.  

Demand variability includes both sigma equal to 10 and 15.  Lead-time varies from seven to forty-

two days in increments of seven.  In every case, the full model for every response, from backorders 

of end products/components to ending inventories of components, shows statistically significant 

results. 

Specifically, every model (except ending inventory for component D) shows that lead-time 

variability plays a statistically significant role in explaining variability in the responses.  Component D 

shows a p-value of slightly more than 0.01 for the lead-time variability factor.  Lead-time and 

demand variability are also statistically significant in every model.  Some interactions are significant 

in the various models.  In particular, lead-time crossed with lead-time variability as well as demand 

variability crossed with lead-time tend to be statistically significant in many models. 

Figures 8.1.1 and 8.1.2 display the impact of lead-time variability across all lead-times in 

terms of average backorders for the end products. 
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Figure 8.1.1:  End Product A Backorders Full vs. Zero Lead-Time Variability across Lead-Times 

 

 

Figure 8.1.2:  End Product B Backorders Full vs. Zero Lead-Time Variability across Lead-Times 

 

Both Figures 8.1.1 and 8.1.2 show distinctly higher levels of average backorders for end 

products at every lead-time level when lead-time variability is present.  Moreover, the growth rate 

of average backorders is faster when lead-time variability is present. 

Figure 8.1.3 summarizes the average backorder levels for each component with both levels 

of lead-time variability across all lead-times. 
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Figure 8.1.3:  Component Backorders Full vs. Zero Lead-Time Variability across Lead-Times 

 

The pattern in each graph of Figure 8.1.3 is roughly the same.  The average backorder level 

grows slightly faster for components with the inclusion of full lead-time variability.  Even without 

lead-time variability, the average backorder level grows as a function of lead-time. 

 

 

Figure 8.1.4:  Component Ending Inventory Full vs. Zero Lead-Time Variability across Lead-Times 
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The average ending inventory levels show slight increases when moving from zero to full 

lead-time variability.  In fact, the amount of increase due to lead-time variability appears nearly 

constant at each level of lead-time.  The growth patterns are nearly identical for all components. 

Figure 8.1.5 summarizes the LSMeans of backorders for each response. 

 

 

Figure 8.1.5:  Lead-Time Variability LSMeans of Backorders 

 

The range of LSMeans impacts goes from only a 5 unit or 9.7% change in the backorders of 

component D (only required for product A in a 1:1 ratio) to a 49 unit or 14.7% change in the 

backorders of component C (required for both products A and C in a 4C:1A and 4C:1B ratio).  Both 

the quantity of components per end-item and the joint/non-joint requirement for both end 

products seem to impact the raw size of the LSMeans for the backorders. 

Figure 8.1.6 summarizes the LSMeans of ending inventory for each component response. 
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Figure 8.1.6:  Lead-Time Variability LSMeans of Ending Inventory 

 

Ending inventories do not change greatly in raw terms due to the inclusion/removal of lead-

time variability.  Ending inventory for component D shows LSMeans growth of approximately four 

units or 4% due to inclusion of full lead-time variability.  Ending inventory for component C grows by 

approximately 42 units or 8.5% due to the inclusion of full lead-time variability. 

8.2 – Exploring Component Safety Stock at 40% of Gross Daily 
Requirements 
 

The main experiment examines only two levels of safety stock—0 and 20% of gross daily 

component requirements.  Hence, the simulation generated 4 extra runs with component safety 

stock set to 40% of average gross daily requirements.   Lead-time sits at two levels—seven days and 

forty-two days.  Demand variability includes sigma equal to both 10 and 15.    The full factorial 

model for every response (i.e., backorders of end products and components as well as ending 

inventory for components) shows highly statistically significant results with very large F-statistics 

and adjusted R2 above 90% in every model.   

Not every factor/treatment level shows significance.  Each model shows that safety stock 

level plays a statistically significant role in explaining variability in the responses (all p-values < 

0.0001).  Lead-time and demand variability are also statistically significant in every model.  Only the 

interaction between demand variability and lead-time shows significance in some of the models. 
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Figure 8.2.1:  Safety Stock Level Impact on LSMeans of End Product Backorders 

 

Each increase in the level of safety stock lowers the overall level of backorders by a Tukey 

HSD significant amount.  In terms of the LSMeans, moving from zero safety stock to forty percent of 

gross daily component requirements lowered end product A average backorders from 100 to 71 

units or a 29% drop.  End product B saw a similar LSMeans drop in average backorders from 90 to 64 

or a 29% drop.  In other words, the impact of increasing safety stock appears to be proportional in 

both end product average backorder levels.  The pattern was similar for all component backorder 

levels. 

Figure 8.2.2 displays the statistical results on component ending inventory levels. 
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Figure 8.2.2:  Safety Stock Level Impact on LSMeans of Component Ending Inventory 

 

Only component C shows a Tukey HSD statistically significant result at each level of safety 

stock.  The other components show statistically significant differences when moving from a 

component safety stock of 0% to 40% of gross daily requirements.  In each case, the general trend is 

for greater levels of ending inventory in each component as safety stock rises.   

8.3 – Component Batch Size at Two Weeks of Gross Daily Requirements 
 

The main experiment uses the L4L batch sizing rule.  Hence, to check what happens to 

backorders and component ending inventories, 8 extra simulation runs show the impact of 

increasing the batch size to two weeks of gross daily requirements for each component.   Lead-time 

sits at two levels—seven days and forty-two days.  Demand variability includes sigma equal to both 

10 and 15.    Lead-time variability of zero or full is also included in these runs.  The full factorial to 

degree two model for every response (i.e., backorders of end products and components as well as 

ending inventory for components) shows statistically significant results with very large F-statistics 

and adjusted R2 above 90% in every model.   

Not every factor or interaction level shows significance.  Each model shows that lot size 

plays a statistically significant role in explaining variability in the responses (all p-values < 0.0001).  

Lead-time and demand variability are also statistically significant in every model.  Lead-time 

variability is usually statistically significant.  Various interaction terms show significance in different 

models.  However, no interaction terms are significant across all models.  Hence, for ease of 

examining this extension, all interactions are temporarily ignored. 
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Figure 8.3.1:  Lot Size Impact on LSMeans of End Product Backorders 

 

The drop in end product backorders due to the larger lot size appears to be dramatic.  Both 

products see an average backorder drop rate of over 87%.  Specifically, the average end product 

backorder rate for end product A drops by 87.7% while end product B experiences an 88.5% drop.  

Components experience even larger percentage drops in average backorder levels.  Of course, end 

products become backordered when any component required for the product is backordered.  

Hence, the end product backorder rate is worse than the component backorder rate.  All component 

backorder rates fall by at least 90%.  As suspected, ending inventories rise dramatically to cause 

such a result as shown in Figure 8.3.2. 

 

 

Figure 8.3.2:  Lot Size Impact on LSMeans of Ending Inventory of Components 
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While backorders drop by 87% or more for both end products and components, ending 

inventories rise by as much as 1012% or a ten-fold increase in ending inventories.  The results 

dramatically display the classic issue of balancing inventories with service level. 

8.4 – The Exploratory Summary 
 

Increased safety stocks and batch sizes both lead to lower average backorder levels at the 

expense of higher inventory levels.  A world with always on-time deliveries (i.e., no lead-time 

variability) leads to lower backorders and lower ending inventory.  Interestingly, zero lead-time 

variability has more of an impact on reducing backorders than affecting inventory.  In contrast, 

increased batch sizes increase average inventory levels enormously while also having potentially 

large impacts in reducing average backorder levels.  Safety stock at 40% of gross daily requirements 

shows less dramatic LSMeans impacts on backorders and component ending inventories.  None the 

less, increasing safety stocks is one of the most common steps firms take to enhance the service 

level.  The findings show that safety stocks do indeed provide the desired buffer to lower overall 

average backorder levels—something future research may wish to examine further. 
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9 – Conclusions 
 

The results of Chapters 5 and 6 show the trade-off between ending inventories and 

backorders.  While backorders show diminishing growth rates as a function of lead-time, the ending 

inventories show the opposite trend.  Intuitively, as lead-time and lead-time variability increase, 

firms rationalize the requisite increase in batch sizes and inventory as a means to enhance 

economies of scale in purchasing and transportation.  The reality is that firms have no choice but to 

hold more inventory as lead-time increases regardless of discounts or economies of scale and scope. 

The graphics of Chapter 4 display how lead-time plays a large role in increasing the rate of 

backorders while simultaneously increasing the ending inventory levels.  In other words, lead-time 

causes both backorders and inventories to rise dramatically.  Demand variability and safety stock 

levels both have impacts on backorders/ending inventories to varying degrees.  Safety stock tends to 

cause fairly constant increases in ending inventory and somewhat varied impacts on backorders as a 

function of lead-time.   

The statistical analyses of Chapter 7 display in numbers how the results of Chapters 4 

through 6 emerge as statistically significant in ANOVA least squares means analysis.  Just as seen in 

the graphics of Chapters 4 through 6, lead-time appears to have the largest impact of any of the 

experimental factors.  High demand variability appears to cause fairly large growths in ending 

inventories but relatively small growths in the average backorder levels.  High safety stocks tend to 

cause relatively small growth in average ending inventories and commensurate decreases in average 

backorders. 

Chapter 8 shows the same pattern of trade-offs between backorder rates and ending 

inventories in the more extreme cases.  When batch sizes become large, the ending inventories 

grow to extreme levels while the backorders diminish markedly.  Safety stocks also promote 

decreased backorders but at the cost of higher ending inventories.  In the extreme case of zero lead-

time variability, both backorders and ending inventories fall.  Interestingly, while the impact of zero 

lead-time variability on backorders is fairly significant, the impact on ending inventories is somewhat 

minimal under the L4L batch size rules and no safety stock. 

As stated at the beginning of this research, global sourcing represents one of the major 

focuses in many industries as a means to lower costs.  The costs associated with global sourcing and 

associated long lead-times have been difficult to quantify.  This paper gives guidance through 

simulation to help ascertain the impact of lead-time, lead-time variability under different levels of 
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safety stock and demand variability on inventories and backorders—two major sources of costs for 

firms. 

In sum, the results of the experiment show that firms do need safety stocks or large batch 

sizes of component parts to prevent excessive backorders.  High ending inventories represent the 

trade-off for the safety stocks and large batch sizes.  The research also demonstrates that firms need 

to consider a factor not often investigated—lead-time.  In many cases, firms seem to assume that 

lead-time variability, not raw lead-time, represents a key factor in creating excess costs.  The results 

of this research call that assumption into question.   
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