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Abstract

Global sourcing represents one of the major focuses in many industries as a means to lower
costs. While global sourcing generally reduces per unit costs, the impact of global sourcing on total
costs throughout the supply chain often remains unrecognized. Increased lead-time due to global
sourcing represents one of the commonly unrecognized costs. Hence, the simulation model
developed in this study demonstrates the impact of lead-time length and variation as well as
variation in demand and safety stocks on the ending inventory and backorder levels in a two product
MRP system. The results show that backorders grow at a diminishing rate as a function of lead-time
while ending inventories show the opposite trend. In addition, the study shows that firms need to
more carefully consider the impact of lead-time. The study demonstrates that lead-time, not just

lead-time variability, represents a key cost factor.
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1 - Introduction

Global sourcing represents one of the major focuses in many industries as a means to lower
costs. According to total cost research discussed in Chapter 2, global sourcing generally reduces per
unit costs, but the impact of global sourcing on total costs throughout the supply chain often
remains unrecognized. In particular, costs such as purchase price and transportation are easily
calculated and recorded. However, costs due to quality issues, reverse logistics and particularly
increased lead-time often are unmonitored.

Costs associated with lead-time can be difficult to quantify. In general, as lead-time grows,
so does lead-time variability, which negatively impacts forecast accuracy. As forecast accuracy
worsens, end product and component backorders tend to increase. Moreover, low forecast
accuracy tends to lead to increased system buffers in the form of inventory. The buffers due to
increased lead-time come in the form of safety stock and increased batch size to achieve economies
of scale and transportation. While the larger safety stocks and batch sizes keep companies at
desired customer service levels, the inventory and related costs grow throughout the supply chain.

While some of the Total Cost of Ownership (TCO) literature discussed in Chapter 2
references the concept of lead-time costs, the actual quantification of the costs usually has been
ignored. Hence, this research examines the impact of lead-time, lead-time variability and forecast
accuracy on backorders and inventory levels throughout a two product MRP driven system.
Specifically, the extensive literature search found in Chapter 2 reveals a void in research that
guantifies lead-time and demand variability impacts and costs. In particular, very few research
papers either in TCO or operations quantify the impacts of lead-time and stochastic demand in MRP
systems. Hence, the model developed in this study demonstrates the impacts of lead-time length
and variation as well as variation in demand and safety stocks on the ending inventory and
backorder levels in a two product MRP system.

The study begins with a thorough search of literature (Chapter 2) on a range of studies from
qualitative TCO through highly mathematical iterative optimization processes that determine lot
sizing rules. In other words, the literature search includes a variety of papers that examine or
optimize safety stocks, lot sizes, lead-times, inventory levels and more. However, few of the studies

attempt to analyze results across multiple explanatory variables.
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Chapter 3 presents the simulation model for the study. The simulation model discussion
outlines the various assumptions and random distributions necessary to make a working MRP
model. The structure of the MRP simulation provides a great variety of controllable parameters,
which permit in-depth investigation of impacts on ending inventories and backorders for both end
products and component parts/subassemblies. Chapter 3 provides details about the Bill of
Materials (BOM) for the product structure, insight into the random distributions of lead-time and
demand as well as details about the forecasting methodology and more.

Chapters 4, 5 and 6 present insights into the results of the simulation in intuitive terms. The
various graphics offer direct, visual meaning behind the results of changing lead-time, safety stock
and demand variability levels. In each Chapter, notes and conclusions give further details for the
reader to grasp the meaning of the results.

Chapter 7 presents a detailed statistical analysis of the simulation’s results. Chapter 7
breaks the statistical analysis into two parts. The first part examines the full model with all possible
interaction terms. The second part examines only those factors and treatments that offered
statistically significant changes to ending inventory and backorder levels.

Chapter 8 explores directions future research might lead as batch sizes, safety stock and
lead-time variability levels change more dramatically than in the main experiment detailed in

Chapters 4 through 7. The research concludes in Chapters 9 with overall findings and conclusions.
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2 - Literature Review

This research began with a search of various Total Cost of Ownership (TCO) studies as well
as other related works on similar topics, such as demand variability, lead-time variability, optimal
lead-time policies and optimal inventory policies. The literature search revealed a void in research
that quantifies lead-time and demand variability impacts and costs. Hence, the simulation model
developed in this study demonstrates the impact of lead-time and lead-time variability as well as
demand variation on the overall inventory levels as well as backorders in an MRP system. As with all
studies, the assumptions of the research often dictate the general validity of the study to industry.
In this study, the goal of the MRP model is to remain both tractable and valid by allowing the
parameters to vary in ways that mimic real industry without excessive assumption sets. In
particular, this study integrates ending inventories and backorders in MRP under various lead-time
levels with differing levels of demand variability and safety stock. The results from the study reveal
that global sourcing and associated long lead-times lead to ever increasing levels of inventory and

backorders.

2.1 - Total Cost of Ownership and Lead-Time

Early TCO articles, mostly authored or co-authored by Ellram, discuss detailed conceptual
TCO frameworks with little quantitative analysis (Ellram L. 1993, Ellram L. M. 1994, Ellram & Siferd
1998). Ellram (1993) focuses on using TCO to analyze supplier development (pre-transaction),
purchase considerations (transaction) and supplier/material defect (post-transaction) impacts
(Ellram L., 1993). While not a part of the current research, future research will integrate the
impacts of material defects. In their 1998 article, Ellram and Siferd discuss ways companies use TCO
as a link to strategic cost management (Ellram & Siferd, 1998). According to the article, 73% of
companies included in the case study used TCO to analyze purchases of components while 55% of
companies used TCO to make raw material purchases. The article also notes the link between TCO
and quality focus in 91% of the case study firms as well as use of best value (cost reduction overall)
items in 82% of firms. In other words, the components and raw materials in the BOM often
represent areas of focus in TCO. Unfortunately, the article does not discuss metrics to assess costs
of the components or raw materials.

Relatively recent TCO articles focus on offshore sourcing and the added costs of increased

lead-times. Ferrin and Plank’s TCO research tries to incorporate lead-time as a cost driver but does
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not indicate how lead-times impact costs, merely that costs will go up as a function of lead-time
(Ferrin & Plank, 2002). Ferrin and Plank also include a large number of other cost drivers, such as
purchase price, shipping, transportation and quality costs with some indication of the impact of each
on the overall costs within a system. Mary Harding and Michael Harding attempt to make lead-time
cost rules of thumb, such as simple percent multipliers based on total lead-time (Harding M. L. 2001,
Harding M. 2007).

Most TCO articles note the common costs associated with manufacturing, such as purchase
price, transportation costs and related overhead. Some of the more recent articles such as Ferrin et
al. (2002) list many more cost drivers including quality, reverse logistics, lead-time, on-time delivery,
storage and more. While TCO literature extensively investigates potential costs, few of the papers
attempt to give metrics to quantify those costs. Thus, this research examines the impact of lead-
time and lead-time variability in combination with demand variability and safety stocks on
backorders and inventory levels as a step toward understanding cost structures. As already noted,

this research is of particular use for firms considering long lead-time global sourcing strategies.

2.2 - Demand and Lead-Time Variability Studies

A number of studies examine the impact of lead-time and demand variability. One of the
earliest works in the field appeared in 1976. Whybark et al. attempt to investigate and categorize
uncertainty in MRP systems (Whybark & Williams, 1976). The authors assert that timing uncertainty
requires safety lead-time while quantity uncertainty requires safety stock. Future works affirm
much of the early work by Whybark and Williams. For example, Maloni et al. investigate the need
for special planning methods under stochastic lead-times (Maloni & Benton, 1997). In effect, lead-
time variability comprises one of reasons manufacturers hold safety stock. Hence, much research
attempts to understand and quantify the relationship of lead-time variability with safety stock. A
later work by De Bodt et al. also confirms that safety stock represents an effective tool to manage
variation in production planning and scheduling as well as maintenance of customer service levels
(DeBodt & Wassenhove, 2001).

Other studies investigate the impact of external demand variability (end-product demand)
as a random variable. Grubbstrom et al. discover that proper buffering requires correctly
dimensioned safety stocks for the master production schedule (MPS) (Grubbstrom & Molinder,

1996). Enns notes the impact of batch size on utilization levels while moving down the Bill of
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Materials (BOM) under known lead-times (Enns, 1999). Enns finds that appropriate batch sizes can
lead to low work-in-process (WIP) inventory and low tardiness as well as consistent throughput
given a known lead-time. Enns’ later 2002 article demonstrates that performance effects due to
forecast bias and demand uncertainty impact the MPS and delivery performance quite differently
(Enns, 2002). Enns contends that increasing planned lead-time or safety stock will improve delivery
performance [metrics] depending on the nature of the tardiness. Enns further contends that
forecast bias offers no benefit over the use of safety stock. Talluri et al. discuss setting safety stock
levels using well established functions based on variable demand and variable lead-time at a case
study firm (Talluri, Cetin, & Gardner, 2004). Holsenback et al. employ the same well established
formulas in their 2007 article on safety stock as a function of variable lead-time and demand
(Holsenback & McGill, 2007).

Interestingly, demand variability is often assumed to follow a normal distribution. Benton
(1991) and Vollmann et al. (2005) are only a few examples (Vollmann, Berry, Whybark, & Jacobs
2005, Benton 1991). Eppen and Martin test the normality assumption by examining two safety
stock determination models with demand and lead-time as unknown, random parameters that must
be estimated (Eppen & Martin, 1988). The model uses exponential smoothing for demand
forecasts. From the exponential smoothing model, Eppen and Martin test for normality of the
errors and find that for long periods of lead-time (j=5 or 10), the normality of error assumption is
not always valid when demand across periods is correlated. When the demands are roughly
stationary, the normality assumption appears reasonable with five or more lead-time periods.
Moreover, Eppen and Martin’s experimental data shows that forecast error appears to grow as the
period’s lead-time increases. The research in this paper uses stationary demand with a modified
exponential smoothing forecasting method (see Section 3.5).

Also, several MRP specific articles investigate safety stocks as a function of lead-times and
batch/lot-sizes. One of the early and often cited works by Karmarkar notes that manufacturing lead-
times depend on lot sizes as well as utilization levels (Karmarkar, 1987). An earlier work by Gupta et
al. investigates the impacts of product structure, lot-sizes, position in the BOM as well as lead-time
uncertainty and lead-time bias (Gupta & Brennan, 1995). The authors find that costs tend to
increase as the lead-time uncertainty bias factors increase. The study also notes that uncertainty
applied at high levels of the BOM has the greatest cost impact. In their 1996 paper, Zijm and

Buitenhek discuss the need to integrate lead-time and capacity management in MRP systems (Zijm
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& Buitenhek, 1996). In a comprehensive research paper, Koh et al. find that appropriate safety
stocks, lot-sizes and rescheduling provide the best means to cope with uncertainty (Koh, Saad, &
Jones, 2002). Koh et al. categorize and investigate a wide array of uncertainty sources and further
categorize the research that attempts to harness or understand the uncertainty. In a 2004 article,
Koh finds that unexpected lead-time increases (late delivery from suppliers) can have significant
impacts throughout the BOM, which is known to cause high inventory and system costs (Koh, 2004).
In addition, Koh finds that delays in a resource can ripple through the MRP system and delay all
batches held in queue, which increases inventory and system costs further—a finding verified in this
research. Jonsson and Mattsson discuss the need for analytically based safety stock levels in MRP
(Jonsson & Mattsson, 2008). The article’s survey data of PLAN companies (an affiliate of APICS) also
shows that among manufacturing companies, daily regeneration MRP and reorder point systems
remain the most popular inventory management systems for purchased inventory. Specifically, 61%
of manufacturers used MRP for parts inventory while 63% used MRP for semi-finished items
inventory. Curiously, 27% of the respondents even used MRP for distribution functions. Most
importantly, Jonsson and Mattsson find that lead-time accuracy and safety stock levels are the most
critical parameters for overall MRP performance. The research in this paper shows that extending
lead-times for materials only compounds the manufacturing lead-time increases as well as the
commensurate inventory increases.

Further studies try to quantify the penalties of shortened lead-times. Das et al. (discussed
below) find that suppliers attempt to charge a higher unit price for the small lot-size, short lead-time
orders (Das & Abdel-Malek, 2003). Chandra et al. argue similarly that while shortened lead-times
allow a reduction of safety stock, procurement costs may increase due to increased demands on
suppliers as well as increased transportation costs (expedited transportation) (Chandra & Grabis,
2008). The question of procurement costs will not be a part of the current research but may be a
consideration for future research.

Demand variability and lead-time articles offer an enormous depth of research potential as
seen in the myriad of articles cited above. The research in this paper picks up on the theme of
understanding and harnessing knowledge about demand variability, lead-time and particularly lead-
time variability. None of the previous works have integrated the idea of long lead-times in
conjunction with demand variability on the backorders and ending inventories within an MRP

system.
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2.3 - Resilience, Flexibility and Lengthening Supply Chain Lead-Times

Long supply chains lead to both greater complexity and increased variability (Christopher &
Peck, 2004). Christopher and Peck also assert that in-bound lead-times represent a major key for
supply chain velocity as well as supplier selection. Moreover, added complexity and variability
become particularly large problems when companies make decisions in isolation due to forecast
rather than demand driven systems. The Christopher and Peck article also discusses the need to
build a resilient supply chain that can help mitigate such risks.

Resilience can come in many forms. One often noted form is redundant or reserve
suppliers, some of whom are close to the final manufacturing site or point of sale (Chopra & Sodhi,
2004). Chopra and Sodhi specifically cite Cisco Systems’ use of slow, overseas suppliers for items
that are fast-moving, standardized and low risk. For slower-moving, non-standardized, high risk
items, Cisco uses more expensive local suppliers to achieve greater flexibility. In partial contrast,
Berger and Zeng argue that better communication and stronger ties can lead to lower risk as well as
more stability in the supply chain, even in the case of single sourcing or limited supplier sourcing
(Berger & Zeng, 2006). Their paper goes on to model the impacts of supplier disruptions, the
operating costs of multiple suppliers and the commensurate financial loss caused by all suppliers’
being down. Unfortunately, the research does not identify the potential downsides of increasing
lead-times even when those long lead-times are known. While integration of supply chain risk and
associated probabilities of the risks are beyond the current research, future research may benefit
from modeling some risk factors.

Supply chain flexibility and agility appear to tie in well with lead-time evaluation. Sharifi et
al. propose that increased speed (reduced lead-time) directly improves agility (Sharifi & Zhang,
1999). Other early papers on supply chain flexibility with regard to procurement often focus on the
importance of relationships between buyers and suppliers (Narasimhan, Jayram, & Carter, 2001).
Another early work by Svensson argues both qualitatively and quantitatively that outsourcing
appears to increase inbound material flow disruptions and related risks, both of which hurt agility
(Svensson, 2001). Later papers, such as Das et al., discuss the concept of flexibility in fixed order

quantity and variable lead-time supply chains (Das & Abdel-Malek, 2003). Das et al. state that order
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guantities (lot-size) and lead-time tend to cause the most supply chain conflict due to a buyer’s ever
decreasing lead-time and smaller lot-size orders to accommodate demand variability. Moreover,
the article models and defines flexibility as the ability of firms in the supply chain to mitigate
procurement price increases and penalties under adverse conditions. Manzini et al. discuss the
benefits of added flexibility in the supply chain to handle capability variation (product mix) and
capacity variation (demand levels) in multi-cellular manufacturing systems (Manzini, Persona, &
Regattieri, 2006).

Verma studies the impacts on supply chain agility in a base stock model with stochastic
demand and fixed replenishment lead-time (Verma, 2006). Finally, in what may become a seminal
piece in defining supply chain flexibility and agility, Swafford et al. tie the concept of flexibility and
agility into multiple dimensions including procurement, manufacturing, distribution and overall
supply chain adaptability (Swafford, Ghosh, & Murthy, 2006). Swafford et al. further assert that
more stable lead-times could allow greater customer responsiveness.

The current study shows that increasing lead-times lead to significant increases in
backorders and ending inventory, two areas that flexibility and agility try to minimize. Moreover,
the findings show that increased lead-time can negatively impact a company’s ability to meet
customer needs. If a company also faces the potential of significant disruptions beyond the simple
demand and lead-time variability investigated in this study, the results could be quite negative for

overall supply chain resilience.

2.4 - Optimization Studies under Demand and Lead-Time Variability

Several previous research papers focus on optimizing lead-time and safety stock. Each
optimization model makes varying degrees of limiting assumptions. In a paper similar to this study,
Molinder investigates optimal lot-sizes, safety stocks and lead-times (Molinder, 1997). More
specifically, Molinder employs design of experiments to define various treatment levels based on
stochastic demand and lead-time to evaluate the impact on optimal lot-sizes, safety stocks and
safety lead-times. The study uses twelve treatment levels to investigate the impact of stochastic
demand and lead-times. The stochastic impact is dramatically lessened by choosing predetermined
factor/treatment combinations. Molinder also attempts to balance stockout costs with inventory

holding costs. Grubbstrom et al. create one of the more broadly valid models using Laplace
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transforms with Gamma distributions to make safety stock decisions (Grubbstrom & Tang, 1999).
Their research shows that optimal safety stock levels tend to drop with reduced variance levels.

An early article by Yano attempts to optimize lead-time directly in a limited structure two-
level subassembly system (Yano, 1987). Chu et al. also investigate and propose an iterative
algorithm to minimize holding costs and backlogging costs under lead-time variability (Chu, Proth, &
Xie, 1993). Other researchers investigate use of Markov models in limited contexts to achieve
optimal lead-times to minimize backlogging and holding costs (Dolgui & Olud-Louly, 2002). Dolgui et
al. note that the assumption set required for modeling makes validity of the Markov model for
industry somewhat questionable. A much later work by Persona investigates super BOMs, modular
product design and safety stock as means to control the forecasts and forecast errors (Persona,
2007). Persona demonstrates the efficacy of the model in both make-to-order (MTO) and assemble-
to-order (ATO) contexts. The article also formulates a total cost of safety stock and demonstrates
the potential safety stock as well as logistics cost reductions in two industrial case studies. While
each of these works focuses more heavily on optimization than the current research, the field of
research into understanding and controlling lead-time and lead-time variability remains quite active.
Unfortunately, as Dolgui et al. note, the assumption sets to make inference can be somewhat
restrictive. Hence, as already noted, the current research tries to maintain a minimal assumption
set for modeling purposes.

In a loosely related paper, Sounderpandian et al. investigate optimization of order quantities
under long lead-times and uncertainty in finished good demands (Sounderpandian, Prasad, &
Madan, 2008). The optimization technique involves linear programming along with genetic
algorithms and stochastic optimization to determine optimal order quantities. The paper
demonstrates the model efficacy with an example application in the plywood industry.
Sounderpandian et al. stress the impact of long lead-times within the supplier’s intra-country supply
chain as well as the lead-times to move the product down the chain. Moreover, the authors note

that risk of loss and commensurate supply uncertainties are also higher in the developing nations.

2.5 - Ties to Strategic Sourcing

In an early work, Ellram and Carr argue that for true strategic sourcing, purchasers must
take an active rather than passive role in controlling material flows (Ellram & Carr, 1994). In effect,

Ellram and Carr argue that strategic purchasing should incorporate purchasing departments at high
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level, strategic decision points. Other related articles discuss sourcing decisions for vertical

integration versus outsourcing of production under differing forms of uncertainty (Kouvelis &

Milner, 2002). Talluri and Narasimhan note that firms that engage in strategic sourcing must focus

on supplier capabilities such as management practices, process capabilities and more as opposed to

simple metrics such as cost (Talluri & Narasimhan, 2004). In other words, though taking inventory

costs as a function of lead-time and demand variability can be very useful for defining and

understanding costs, strategic issues beyond costs must also be considered.

2.6 - Summary of Articles

A chronological summary of the articles cited above appears in table 2.6.1.

Table 2.6.1: Summary of Cited Articles

Lead-time and Demand Variability
Chandra and Grabis, 2008

Jons son and Mattsson, 2008
Holsenback and McGill, 2007
Koh, 2004

Talluri, Cetin and Gardner, 2004
Enns, 2002

Koh, Saad and Jones, 2002
DeBodt and Wassenhove, 2001
Enns, 1999

Maloni and Benton, 1997
Grubbstrom and Molinder, 1996
Zijm and Buitenhek, 1996

Gupta and Brennan, 1995
Benton, 1991

Eppen and Martin, 1988
Karmarkar, 1987

Whybark and Williams, 1976

Topic

Supplier penalties for short lead-times

Criticality of analytically based safety stocks
Applications of established safety stock formulas
Ripple effect of material delays through the BOM
Applications of established safety stock formulas
Forecast bias and demand uncertainty impact MPS
Best buffers to handle uncertainty

Safety stock to manage planning, scheduling & service
Batch size impact on utilization through the BOM
Planning needs to accommodate variability

Proper safety stock buffering in the MPS

Integration of lead-time and capacity management
MRP cost impacts due to variability and BOM position
Safety stock levels with normally distributed demand
Safety stock levels & normality of forecast error

Lot size impacts on lead-time

Early work in MRP uncertainty buffers

Optimization Studies Related to Lead-
time and Demand Variability

Sounderpandian, Prasad, & Madan, 2008
Persona, 2007

Dolgui and Olud-Louly, 2002
Grubbstrom and Tang, 1999

Molinder, 1997

Topic

Optimal order quantity in developing nations
Optimizing safety stocks with the SBOM and modularity
Markov models to reduce holding and backlog costs
Reduced variance leads to lower safety stock levels
Optimizing lot-size, lead-time and safety stocks
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Chu, Proth and Xie, 1993
Yano, 1987

Optimization of costs under lead-time variability
Optimal lead-times in two-level subassemblies

Resilience, Flexibility and Lengthening
Supply Chain Lead-Times

Berger and Zeng, 2006

Manzini, Persona and Regattieri, 2006
Swafford, Ghosh and Murthy, 2006
Verma, 2006

Christopher and Peck, 2004

Chopra and Sodhi, 2004

Das and Abdel-Malek, 2003
Narasimhan, Jayram and Carter, 2001
Svensson, 2001

Sharifi and Zhang, 1999

Topic

Optimizing number of suppliers

SC flexibility to handle capacity and capability variance
Defining flexibility and agility in the supply chain
Supply chain agility in the face of variability

Resilience and dangers of longer supply chains

Supply chain risks and industry reactions

Flexibility in lot-size & lead-time buyer/supplier conflict
Flexibility of supplier relations

Outsourcing disruptions for inbound material flows
Relation of lead-time to supply chain agility

Strategic Sourcing Links
Talluri and Narasimhan, 2004
Kouvelis and Milner, 2002
Ellram and Carr, 1994

Topic

Monitor and understand supplier capabilities
Modeling impacts of outsourcing versus integration
Lit review of strategic sourcing methods/research

TCO and TCO with Lead-Time
Harding M., 2007

Ferrin and Plank, 2002
Harding M. L., 2001

Ellram and Siferd, 1998
Ellram L. M., 1994

Ellram L., 1993

Topic

Discussion of practical lead-time cost metrics
Exhaustive list of TCO cost factors

Simple cost metrics related to lead-time

TCO implementation in strategic cost management
Standard vs. Unique TCO models

Framework for pre, post and transactions in TCO

Textbooks

Vollmann, Berry, Whybark, & Jacobs, 2005

Topic
Manufacturing Planning and Control Systems in SCM

2.7 - Summary of Literature Search Findings

The literature search reveals that demand variability and lead-time studies are plentiful and span

multiple topic areas. Supply chain agility, flexibility, resilience, planning, optimization as well as MRP

represent some of the many areas that note the various impacts due to lead-time on costs,

inventory levels, supply chain responsiveness and customer service. However, few of the papers

attempt to directly quantify the impact of excessively long lead-times due to global sourcing. TCO

papers sometimes note lead-time as a cost but only give minimal guidance on calculating the cost.

In resilience, flexibility and agility papers, increased lead-time throughout a supply chain emerges as

a negative factor for the flexibility, resilience and agility. MRP research focuses include finding
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optimal safety stock levels, transportation methods and costs given set levels of lead-time. Yet, little
of the existing research attempts to model ever increasing lead-times due to global sourcing. In
particular, the current literature lacks investigation of ending inventories and backorders in MRP

under various lead-time levels with differing levels of demand variability and safety stock.
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3 - The Simulation Model

The model employs a two product structure with shared and unique components.
Moreover, the model uses symmetrical and asymmetrical components as well as unique
components to discern potential backorder and ending inventory differences. Further, distributional
assumptions came from various works cited in Chapter 2 of this work. For instance, many research
papers and supply chain texts generally assume that demand variability follows the normal
distribution (Vollmann, Berry, Whybark, & Jacobs 2005, Benton 1991). The following sections
discuss the experimental factors, batch sizes, steady state levels, forecasting methods, bill of

materials, MRP regeneration and other facets of the simulation model.

3.1 - Bill of Materials

The bill of materials (BOM) contains two end products (parents) and four component inputs.
Component C is a common component with symmetric requirements of 4 pieces per unit of end
product. Component D is unique to end product A with a requirement of one unit per unit of end
product A. Component F is unique to end product B with a requirement of four units per unit of end
product B. Component E is another common component with asymmetric requirements. End
product A requires one unit of component E while end product B requires four units of component
E. The different quantity and symmetry in components should provide both more validity and
information about potentially different ending inventory and backorder levels. Table 3.1.1 and

Figure 3.1.1 display the BOM in tabular and graphical form, respectively.

Table 3.1.1: Bill of Materials
Quantity Per

Level O Level 1 Parent
Product A
Component C 4
Component D 1
Component E 1
Product B
Component C 4

Component F

Component E
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Product A Product B
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Figure 3.1.1: Bill of Materials Graphical Depiction

3.2 - Capacity and Daily Regeneration

The simulation models companies in an assemble-to-order (ATO) environment. Orders
arrive daily. Additionally, the MRP system regenerates daily. When orders for end products arrive,
the companies promise delivery 5 days out. In the simulation, production capacity is always
adequate to meet demand when component parts are available. The daily regeneration of the MRP
allows frequent determination of production requirements, demand levels and forecasts. Hence,
the error due to regeneration should be minimal when compared to a weekly or longer MRP
regeneration cycle. However, the planned order receipts created in a day freeze into the future for
the length of the lead-time (no change orders are allowed within the lead-time period). In other
words, the planned order receipts within the lead-time will always be zero — the manufacturer
cannot alter orders within the lead-time. In practical terms, once a shipment leaves a supplier, a
supplier cannot insert more components into the shipment. Since MRP is a forecast driven system,
the freeze period length can have a great impact on the overall performance of the MRP system.
Any demand changes within the lead-time that increase requirements beyond the predicted on

hand inventory generate additional backorders.

3.3 - Backorders

The simulation also runs under the assumption that no orders are lost. In other words,

customers will choose to indefinitely backorder end products rather than seek a different supplier.
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A complete stockout of any one component required to make an end product generates a backorder
for the end product. To exemplify, if component E is entirely stocked out (on backorder), the
manufacturer can produce neither end product A nor B.

Further, when the supply of a component is not sufficient to meet the full demand for end
products, the shortage splits proportionally between products A and B. For example, assume end
product A has demand for 100 units while end product B also has demand for 100 units. However,
only 400 units of component E are available while all other component stocks are sufficient to meet
demand. The BOM shows that demand for 100 units of end product A leads to gross requirements
of 100 units of component E. Furthermore, the BOM shows that demand for 100 units of end
product B leads to gross requirements of 400 units of component E. Hence, component E has total
gross requirements of 500 units but only 400 units available. Since the requirements will be split
proportionally among products and 400/500 or 80% of the components required are available,
0.8*400 or 320 units of component E will be assigned to produce end product B while 0.8*100 or 80
units of component E will be assigned to produce end product A. In terms of finished goods, the
manufacturer will create 80 units of end product A and 80 units of end product B. In other words,
when X% of a component’s gross requirements are available, the manufacturer will produce X% of

the demand for end products A and B.

3.4 - Demand Distribution

The simulation models end product demand as normally distributed with a mean of 100 and

two standard deviation levels of 10 and 15. Mathematically,

Demand ~ N(u, o)
s.t.
41 =100
OLow =10

O pigh = 15
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All random numbers were created in PROModel simulation package and rounded to the
nearest integer in Excel to create the required random vector of demand. Since the demand follows

a truly random distribution, no built-in cyclicality/seasonality exists.

3.5 - Forecast Methodology

The adaptive-response-rate single exponential smoothing (ADRES) appears to be a relatively
well behaved forecasting model for the randomly generated demand data (Wilson & Keating, 2002).
The ADRES adapts to the data to provide automatic adjustments for frequent changes in demand,
particularly when the model forecasts demand that is roughly symmetric around a mean value.
Forecasting a demand based on N(100, sigma), where sigma is 10 or 15, the ADRES represented an

easy choice. The ADRES in mathematical form:

F..=aX +0-a)F , st,

Se

a, = , where

Si =/ +(L-p)S,, and A :ﬂ|et|+(1_ﬁ)A[—l
e =X, —FK

Hence, alpha is a dynamic value based on the past period smoothed error (S;) and absolute
smoothed error (A;).

The ADRES model forecasts one period forward. Hence, since the data has no trend or
seasonality, the forecast for demand in day X is also the forecasted demand for every day through
the length of the lead-time. Thus, for a 42 day lead-time, the MRP system will generate
requirements based on a forecast schedule X+42 days into the future. Thus, if the forecast is
particularly far from the true demand for the period, the forecast error will carry through the entire
MRP freeze period.

The tracking signal provided a check of the biases of the forecasts. The tracking signal
divides the running sum of forecast errors (RSFE), a measure of bias, by the mean absolute deviation
(MAD), a measure of error, to give a picture of the true bias (in terms of MAD) in the system. To

hold the tracking signal within roughly desired bounds of +/-5, the ADRES forecasting held beta
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constant at 0.2 with alpha varying as needed. A summary of the tracking signals for each forecasting

vector appears in Table 3.5.1.

Table 3.5.1: Tracking Signals on Forecast Error

Tracking Signal N{100,10)
Run {Product - Runi) A-1 B-1 A-2 B-2 A-3 B-3 A4 B4 A5 B-5
Average Tracking Signal -0.7 1.1 -0.1 29 20 -259 5.0 32 24 11
Count Beyond +/-5 292 51 39 648 180 352 1224 313 238 291
Percent Beyond +/-5 19% 3% 3% 43% 12% 23% 82% 21% 16% 19%

Tracking Signal M{100,15)
Run {Product - Runi) A-1 B-1 A2 B2 A3 B3 A4 B4 A5 BS
Average Tracking Signal -0.6 1.6 04 35 1.6 -2.2 88 33 22 06
Count Beyond +/-5 260 78 45 686 124 248 1231 340 213 278
Percent Beyond +/-5 17% 5% 3% 46% 8% 17% 82% 23% 14% 19%

Since the MRP followed a daily regeneration, forecasting also occurred daily and only one
day into the future. Random error showed up as quite large in some demand vectors and relatively
small in others—just as it would in real companies. For instance, A-4 and B-2 show particularly large
tracking signals in both the levels of demand variability. On the other hand, A-2 and B-1 show very
small tracking signals at both levels of demand variability. Hence, the simulation covers scenarios
from excellent forecasts down to poor, highly biased forecasts for greater general validity. While
discussion of various alternative forecasting methods is beyond the scope of this research, a real
company would be unlikely to achieve forecast accuracy significantly better than A-2 and B-1 or

worse than A-4 and B-2.

3.6 - Lead-Time Distribution

The simulation models the maximum early lead-time (MELT) as a gamma distribution. MELT
represents that maximum number of days early that a shipment can arrive for each potential lead-
time. As a conservative assumption, orders were only allowed to arrive early as a ratio of LT/7. In
other words, the maximum amount an order could arrive early was one day for a seven day lead-
time while a forty-two day lead-time could have an order arrive up to six days early. In reality, the
variability of arriving early could be larger. As for arriving late, the gamma distribution has a right
skewed tail that allows orders to be significantly late but only rarely. All random digits were created
as vectors in PROModel and rounded to the nearest integer to create a vector of lead-times in Excel.

A summary of the results appears in Table 3.6.1. Mathematically,
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MaxEarlyLeadTime(MELT) ~ Gamma(e, £3) or I'(«, )

s.t.

2

2
) o
o= lul\zllELT while f = MELT

O MELT HwveLT

Thus,
E(MELT) = af = tiye 1
and

V(MELT) =af® = cier

o and S take on values to set the coefficient of variation equal to 0.3

A~V (MELT N 2
cv =2 _V( ) NP _ gy

u  E(MELT) af
Thus, ¢ Y2 =0.3 or ¢ =11.1111

Hence, the S takes on values such that the expected values are
E(MELT) =apf =

1for 7 day LT, « =11.1111, 2 =0.09
2 for 14 day LT, « =11.1111, #=0.18
3for21daylT, & =11.1111, #=0.27
4 for 28 day LT,  =11.1111, 5 =0.36
5for35day LT, « =11.1111, #=0.45
6 for 42 day LT,  =11.1111, # =0.54
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Table 3.6.1: Summary of Lead-Time Distribution Means and Variances

and the standard deviations are

SD(MELT) = V(MELT) =+/ef* =

0.3 for 7 day LT

0.6 for 14 day LT
0.9 for 21 day LT
1.2 for 28 day LT

1.5 for35day LT

1.8 for 42 day LT

LT Days Alpha Beta Betan2 E(MELT) V(MELT)
7 11.11111 0.09 0.0081 1 0.09
14 11.11111 0.18 0.0324 2 0.36
21 11.11111 0.27 0.0729 3 0.81
28 11.11111 0.36 0.1296 4 1.44
35 11.11111 0.45 0.2025 5 2.25
42 11.11111 0.54 0.2916 6 3.24
The coefficient of variation remains at 0.3 for all calculations.

SD(MELT)
0.3

0.6
0.9
1.2
1.5
1.8

In effect, the mean of the Gamma distribution positions at the expected lead-time in days.

The Gamma distribution models the variance around the expected lead-time. The higher the lead-

time, the wider the gamma distribution becomes as a function of the CV. Of course, the gamma

distribution truncates at zero but skews on infinitely at higher values. In other words, the expected

lead-time is the original lead-time in days while MELT represents the maximum number of days an

order can arrive early, which truncates at zero. The standard deviation of the MELT follows the right

skewed tail of the Gamma distribution. Hence, there is no direct truncation on the number of days

an order can be late.
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3.7 - Steady State

As noted in the forecasting section, the adaptive-response single exponential smoothing
forecasting system was set to hold beta constant at 0.2 with alpha varying as needed. Each
simulation replication generated 1000 days of data. To allow steady state to take effect, each
experimental run removed the first 150 observed days. Many simulation runs achieved steady state
much earlier than 150 days. Yet, consistency of the sample size and conservative estimates were
fortunate benefits from the data loss. Steady state was checked graphically for every treatment
level of the simulation. Law and Kelton’s text on simulation modeling describes the method
employed (Law & Kelton, 2000). Figures 3.7.1 and 3.7.2 show examples of output of twenty period

moving averages for various responses in the simulation.
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Figure 3.7.1: Sample steady state graph for DV10, LT42, SSO on Average Backorders of End Product B
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Figure 3.7.2: Sample steady state graph for DV15, LT7, SSO on Average Ending Inventory on Component C
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3.8 - Safety Stock

Safety stock had no distributional assumptions. Instead, two main effect factor levels were
set with one additional pilot study level. The main effect levels were no safety stock and 20% of
daily demand. The pilot study level held safety stock at 40% of daily demand to observe the impact

of ever increasing safety stock levels on both backorders and ending inventory.

3.9 - Batch Size

The experiment held batch sizes fixed. While batch size was not part of the main
experiment, experimental subsets test the impact of batch size at extremes of lead-time (e.g., 7 and
42 days). Batch size for the main experiment was always lot-for-lot (L4L). As noted, orders could

occur in each period to meet forecast demand for the length of the lead-time.

3.10 - Final Experimental Models

The experiment’s main effects at the factor level:
e Lead-Time (LT): Lead-time at factor levels 7, 14, 21, 28, 35 and 42 days [6 levels]
o Lead-time variance follows a Gamma distribution.
o As noted in the Lead-time distribution section, the coefficient of variation for lead-

time remained constant at 0.3.

e Demand Variability (DV): Demand variability had factor levels 10 and 15 [2 levels]

o Demand was modeled using a normal distribution with mean 100.

o Safety Stock (SS): Safety stock was set at either 0% or 20% of average daily gross
requirements for each component under the ratios described in the BOM. For example,
component C has gross average daily requirements of 800 units. Hence, safety stock at 20%

of average daily gross requirements leads to a safety stock of 160 units. [2 levels]
Treatment levels (combinations of the factor levels):

e LT=7,DV=10,55=0
e LT=14,DV=10,55=0
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e LT=35,DV=15,SS=20%

e LT=42,DV=15,SS=20%

Hence, the main effects consisted of 24 treatment levels (LT*DV*SS = 6*2*2 = 24). Each
treatment level had n=5 replicates.

Other effects examined in subsequent experiments include zero lead-time variability, higher
safety stock levels and larger batch sizes. Each of these other effects contains between four and
twelve experimental runs.

e Zero Lead-Time Variability: Additional experimental runs investigate the impact of zero

lead-time variability at each lead-time and demand variability level. [12 additional runs]

e Safety Stock: Another set of additional runs investigates a 40% safety stock level at 7 and

42 days of lead-time with demand variability at sigma equal 10 and 15. [4 additional runs]

e Batch Size: An additional set of experimental runs investigates the impact of increasing
batch size to two weeks (14 days) of average demand or simply 100*14 = 1,400 units

multiplied by the appropriate BOM multiplier for each component. [8 additional runs]

The total experiment contains 48 experimental runs with 240 replicates. 120 replicates were
used in the main experiment for the first 24 experimental runs. The remaining 24 experimental runs
split replicates across the additional questions of interest.

The responses of interest include end product backorders, component backorders and
component ending inventory. Each of these requires examination for statistical as well as practical

importance.
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4 - Simulation Results and Findings

Chapter 4 focuses on the practical significance of the experimental results. All main effects
are statistically significant. Many interaction effects are not statistically significant. A full statistical
analysis appears in Chapter 7.

While the experiment/simulation tries to isolate the impacts of the main effects (lead-time,
safety stock and demand variability), the forecasting method (ADRES) and random error also cause
some of the effects seen. Most of the impact of the forecasting error should appear as random
error. Yet, while the simulation gives guidance on the general pattern due to main effects, other
impacts could make significant performance differences for real world manufacturers. The potential
exists that forecasting error added to the extremely poor results in terms of backorders and ending
inventory at the highest lead-times. Interestingly, the company with the very poor forecasting
(tracking signal average of 8.8 indicating bias) did not show up as consistently high or low in terms of
backorders or ending inventory. In other words, the MRP system appears to have smoothed the
biased forecast by adjusting requirements dynamically at each level of lead-time. In any case, as
with any simulation, validity is highest when the modeling assumptions (outlined in detail in Chapter

3) are met.

4.1 - Graphical Analysis

The responses of interest in the experiment include end product backorders, component
backorders and component ending inventories. As noted in the simulation model section, the main
effect experimental variables include safety stock, lead-time and demand variability. The trends
across lead-time in each of these responses can be seen most easily through graphical analysis. In
each case, the examined isolated effect is calculated as an average across all other effects.

The first set of graphs show that as lead-time grows, the level of end product backorders
grows. Likewise, as lead-time grows, the backorders and ending inventory of components also
grow. See Figures 4.1.1 —4.1.3 to examine end product backorders, component backorders and

component ending inventories, respectively.
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Figure 4.1.1: Average End Product Backorders across Lead-Time in Days

Figure 4.1.1 displays that end product backorders grow at a diminishing rate as lead-time
grows. Of course, other experimental factors generate different impacts on the growth of
backorders and ending inventory as discussed in Chapters 5 and 6. Another note is that backorders
of end product A appear to grow at a faster rate than the backorders of end product B, which
appears to be in part due to the more linear rate of increase in backorders for component D. At a
lead-time of 7 days, the difference between the two backorders averages only 5 units and grows to
13 units at a lead-time of 42 days. Since each end product has an average daily demand of
approximately 100, the difference could be significant for some firms.

As already noted, the average demand for each end product is approximately 100 units per
day. In other words, at 21 days of lead-time, the average backorders per day for end product A
exceed average daily demand. Likewise, end product B backorders exceed average daily demand at
approximately 24 days of lead-time. In other words, the systems are not serving customer needs
well at relatively short lead-times. Chapters 5 and 6 analyze the impact of safety stock and demand

variability potential causes behind the poor backorder performance of the system.
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Figure 4.1.2: Average Component Backorders across Lead-Time in Days

The BOM (section 3.1) shows that end item C has symmetric requirements of four units per
unit of end product A and four units per unit of end product B. Thus, the total gross requirements
for end product C are the highest of any component part in the experiment. As figure 4.1.2 displays,
backorders for component C represent the largest magnitude backorders of any component, as
expected. Both end products A and B require component E but asymmetrically. Figure 4.1.2 shows
the impact of the lessened requirements for component E. End product B requires four units of
component F per unit of end product B. End product A requires one unit of component D per unit of
end product A. Hence, the total backorders for D and F are the lowest among the backorders.

Each of the backorders shows a diminishing growth rate overall. However, the
symmetrically required component C average backorders grow faster than any other component
average backorder and do not appear to level off as quickly. Moreover, component D shows a

slower rate of diminishing returns in relative proportion to the other components.
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Figure 4.1.3: Average Component Ending Inventory across Lead-Time in Days

Unlike backorders, which show diminishing growth rates, ending inventory appears to
continue growth at an accelerating rate as lead-time grows. Due to the product structure (see
section 3.1), the ending inventory for component C grows the fastest while component D grows the
slowest, which helps explain the less dramatic growth rate in backorders for component D observed
in Figure 4.1.3.

Unexpected are the nearly identical ending inventories for components E and F.
Component F is an asymmetrically shared component while component E is unique to end product
B. Gross requirements are similar at 500 units per day of F and 400 units per day of E. However, the
nearly identical results, both in magnitude and trend, still represent somewhat of a surprise.

Quantitatively, ending inventory of component C grows from an average of approximately
200 units at a lead-time of seven days to nearly 1000 units at a lead-time of forty-two days. In
percentage terms, ending inventory for component C grows by nearly 500%. Other inventories

show similar percent gains at lower raw inventory levels.

4.2 - Discussion of Results

The overall results show that as lead-time grows, ending inventories and backorders of
component parts grow. As the backorders of component parts grow, so do the backorders of end
products. Backorders grow at diminishing rates while inventories grow at accelerating rates. Of

course, both higher backorders and higher inventories lead to higher costs for the firms.
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Two interesting notes emerge from the overall experimental picture. First, at only 21-24
days of lead-time, average end product backorders exceed average daily demand. In other words,
the system fails to keep backorder levels below demand at approximately a three week lead-time.
The result demonstrates that companies engaging in relatively long lead-time global sourcing should
exercise caution or at least recognize the potential for customer service issues. Second, average
ending inventories for a jointly, asymmetrically required component are nearly identical to the
average ending inventories of a lower gross requirement component required for only one end
product. In other words, the impact of asymmetry in component requirements does not appear to
have a major impact in the ending inventories. The gross requirements, rather than common parts
or symmetry of requirements, seem to have the largest impact on ending inventory levels.

Sections 5 and 6 discuss the impacts on ending inventory and backorders due to safety stock
and demand variability levels across lead-times. Each section breaks down the impacts of demand

variability and safety stock in isolation and then in combination.
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5 - Analysis of Backorders

Chapter 4 notes that average end product backorders exceed average daily demand at only
21-24 days of lead-time. Chapter 5 analyzes some of the potential causes of the breakdown as well
as investigates other points of interest in the backorder patterns for both end products and

components.

5.1 - Lead-Time Impact on End Products and Components

In the overall system, backorders exceed average demand at 21-24 days of lead-time and
beyond. The following sections analyze the impacts of demand variance and safety stocks on

backorder levels at the various lead-times.

5.2 - Demand Variance Impact on End Products across Safety Stock Levels

Figures 5.2.1 and 5.2.2 show the average backorder level per day (averaged across safety
stock levels) for end products A and B, respectively. In each graph, two lines appear showing the
trend for demand variability at standard deviations 10 and 15. As discussed in section 3.4, end
product demand is modeled under a normal distribution with mean 100 and standard deviations of
10 and 15 units. In general, higher demand variability should lead to higher backorders. Figures
5.2.1 and 5.2.2 verify the intuition that greater demand variability leads to higher average levels of

backorders.
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Figure 5.2.1: Average Backorder of End Product A at Demand Variability 10 and 15 across Lead-Time in Days
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Figure 5.2.2: Average Backorder of End Product A at Demand Variability 10 and 15 across Lead-Time in Days

Both Figures 5.2.1 and 5.2.2 show very similar diminishing growth patterns for the average
backorder levels. The impact of increased demand variability on average backorder level is
somewhat consistent at each level of lead-time until a convergence at high lead-times. While the
end products do not show the convergence pattern as strongly as the components (discussed
below), the average backorder level starts to converge between the two demand variability levels at
the highest levels of lead-time. Hence, companies that are concerned about the demand variability
in their industry, something that is often regarded as outside an individual company’s control, can
see that increased lead-time worsens backorder levels but at a diminishing and somewhat
consistent amount for short and fairly long lead-times with a potential convergence at the longest

investigated lead-times.

5.3 - Demand Variance Impact on Components

Figures 5.3.1 through 5.3.4 show the average backorder level per day for components C, D, E
and F, respectively. In each graph, two lines appear showing the changes in trend due to end
product demand variability at standard deviations 10 and 15. End product demand variability

directly impacts component demand as shown in the BOM (see section 3.1).
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Figure 5.3.1: Average Backorder of Component C at Demand Variability 10 and 15 across Lead-Time in Days

Figure 5.3.1 shows a diminishing growth rate of average component C backorders with a
convergence at the highest level of lead-time (42 days). Examination of the standard deviations of
demand at 10 and 15 shows that demand variability 15 grows average backorders at a faster rate
than demand variability 10 until a sudden drop and convergence of the average backorder levels

after 35 days of lead-time.
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Figure 5.3.2: Average Backorder of Component D at Demand Variability 10 and 15 across Lead-Time in Days

Figure 5.3.2 shows a diminishing growth rate of average component D backorders with

another convergence at the highest level of lead-time (42 days). The convergence at 42 days of
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lead-time could be cause for modeling longer lead-times in the future to see if some sort of demand

variability cancelation occurs at very high lead-times.
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Figure 5.3.3: Average Backorder of Component E at Demand Variability 10 and 15 across Lead-Time in Days

Figure 5.3.3 once again shows a diminishing growth rate of average component E

backorders. Component E shows little convergence at the highest lead-times.
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Figure 5.3.4: Average Backorder of Component F at Demand Variability 10 and 15 across Lead-Time in Days

Figure 5.3.4 shows that component F follows a pattern similar to the other components with
a diminishing growth rate in average component backorders. Once again, component F shows

convergence of the two demand variability levels at the highest level of lead-time (42 days).
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The convergence in three of the four components at 42 days of lead-time appears to be
worth future investigation. The result could be due to random error or some other factor. None the
less, future simulations likely should model longer lead-times to see if some sort of demand

variability cancelation occurs at very high lead-times.

5.4 - Safety Stock Impact on End Products across Demand Variability Levels

Figures 5.4.1 and 5.4.2 show the average backorder level per day across both levels of
demand variability for end products A and B, respectively. In each graph, two lines appear showing
the trend for safety stock levels of 0% and 20% of average gross daily requirements for components.
In other words, safety stock is not modeled for end products in the simulation since the
manufacturers produce and ship orders within the five day promised lead-time window (when
component stock is available). Figures 5.4.1 and 5.4.2 verify the commonly held notion that lower

component safety stock levels lead to higher average backorder levels for end products.
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Figure 5.4.1: Average Backorder of End Product A at Component Safety Stocks 0% and 20% of Gross Daily Requirements

across Lead-Time in Days

www.manharaa.com



33

160
Average Backorder of End Product B

140

Average Unit Backorder PerDay

Figure 5.4.2: Average Backorder of End Product B at Component Safety Stocks 0% and 20% of Gross Daily Requirements

across Lead-Time in Days

Figures 5.4.1 and 5.4.2 show very similar diminishing growth patterns for the average
backorder levels across the two safety stock levels of 0% and 20% of gross daily component
requirements. The lines move in an almost perfectly parallel fashion, showing that the impact of
increased safety stock on average backorder level is roughly constant at each level of lead-time. In
fact, the difference between average backorders due to safety stock levels at each lead-time is
approximately constant at 14 units for end product A and 13 units for end product B. In effect,
safety stock simply reduces backorder levels by a roughly constant amount no matter the lead-time
level. Chapter 6 shows that the price for the diminishing backorder levels is actually a growing rate

of daily ending inventory.

5.5 - Safety Stock Impact on Components

Figures 5.5.1 through 5.5.4 graphically display the average backorder level per day for
components C, D, E and F, respectively. In each graph, two lines appear displaying the trend for

safety stock levels of 0% and 20% of gross daily requirements.
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Figure 5.5.1: Average Backorder of Component C at Safety Stocks 0% and 20% of Gross Daily Requirements

across Lead-Time in Days
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Figure 5.5.2: Average Backorder of Component D at Safety Stocks 0% and 20% of Gross Daily Requirements

across Lead-Time in Days
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Figure 5.5.3: Average Backorder of Component E at Safety Stocks 0% and 20% of Gross Daily Requirements

across Lead-Time in Days
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Figure 5.5.4: Average Backorder of Component F at Safety Stocks 0% and 20% of Gross Daily Requirements

across Lead-Time in Days

Figures 5.5.1 through 5.5.4 all show roughly the same result—safety stock has a nearly
constant impact on the average backorder level across each level of lead-time. Unlike the average
backorder levels seen at different levels of demand variability, the average backorder levels at each

safety stock level do not converge or even change in pattern as a function of lead-time.

5.6 - Backorder Analysis for Components Combined Analysis

Figures 5.6.1 through 5.6.6 graphically display impacts on backorders due to changes in both

demand variability and safety stock level combinations.
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Figure 5.6.1: Average Backorder of End Product A at all Safety Stock and Demand Variability Levels across Lead-Time in

Days

Figure 5.6.1 shows that DV10-SS0 and DV15-S520 appear to be approximately the same. All

trends are nearly the same.
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Figure 5.6.2: Average Backorder of End Product B at all Safety Stock and Demand Variability Levels across Lead-Time in

Days
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Figure 5.6.2 once again shows that DV10-SS0 and DV15-5SS20 appear to be approximately
the same at each mean level. As with end product A, all trends are nearly the same for every

treatment level.
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Figure 5.6.3: Average Backorder of Component C at all Safety Stock and Demand Variability Levels across Lead-Time in
Days
Figure 5.6.3, the graphic for component C, shows that DV10-SSO and DV15-SS20 appear to

be similar at low lead-times but diverge at high lead-times. The trends in the treatment levels show

some variability, particularly at the longest lead-times.
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Figure 5.6.4: Average Backorder of Component D at all Safety Stock and Demand Variability Levels across Lead-Time in

Days
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Figure 5.6.4 for component D shows somewhat less variability than Figure 5.6.3 (component

C). DV10-SS0 and DV15-SS20 appear similar at low lead-times but diverge at high lead-times.
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Figure 5.6.5: Average Backorder of Component E at all Safety Stock and Demand Variability Levels across Lead-Time in
Days
Figure 5.6.5 for component E shows somewhat less variability than Figure 5.6.3 (component
C) but more variability than 5.6.4 (component D). The added variability likely stems from the joint
requirements by both end products for components C and E. Yet again, DV10-SS0 and DV15-5520

appear to be similar at low lead-times but diverge at high lead-times.
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Figure 5.6.6: Average Backorder of Component F at all Safety Stock and Demand Variability Levels across Lead-Time in

Days
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Figure 5.6.6 for component F shows somewhat less variability than Figures 5.6.3 and 5.6.5
(component C and E) and similar variability to 5.6.4 (component D). The added variability likely
stems from the joint requirements by both end products for components C and E. Yet again, DV10-
SSO and DV15-S520 appear to be similar at low lead-times but diverge at high lead-times.

The results show similar patterns for both end products and the component parts. For
instance, both components and end products show that DV10-5520 (low demand variability and
high safety stock) consistently performs the best in terms of backorders (i.e., has the lowest average
backorder levels at each lead-time) while DV15-SS0 (high demand variability and low safety stock)
performs the worst. For both end products and components, the treatment levels DV10-SSO and
DV15-S520 show nearly identical results at low lead-time levels with some divergence at higher lead-
times. In addition, components C and E show higher overall variability in terms of trend changes
and spreads at each treatment level when compared to components D and F. The shared
requirements for both C and E in end products A and B represent the most likely explanation for the

difference in behavior of the different components.

5.7 - Conclusions about Backorders

One of the most important notes on backorders occurs in Chapter 4: backorders exceed
average demand after 21-24 days of lead-time for both end products. Chapter 5 displays how
demand variability causes interesting convergence in component and end product backorder levels
at the longest investigated lead-times. On the other hand, Chapter 5 also displays how safety stock
levels have a nearly constant impact on average backorder levels for both components and end
products.

The experiment demonstrates that longer lead-times tend to lead to higher average
backorder levels. Higher levels of safety stock help mitigate the average backorder levels by a
relatively constant amount. When analyzed together as treatment combinations, the simulation
shows that high demand variability and low safety stocks lead to the highest average backorder
levels at every lead-time while low demand variability and high safety stocks do the opposite.
Interestingly, low safety stock with high demand variability and high safety stock with high demand

variability appear to yield roughly the same overall average backorder levels.
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In quantitative terms, average component and end product backorders often grow by 300%
or more as lead-time moves from seven to forty-two days. For instance, the average backorder level
for end product A with demand variability 10 and safety stock of 20% of gross daily component
requirements grows from an average backorder level of 31 units per day at a lead-time of seven
days to 128 units at a forty-two day lead-time —a 410% increase in average backorders due to lead-
time.

In sum, manufacturers in relatively high demand variability industries do face even more
potential of backorders, but the pattern shows a strongly diminishing rate of backorder growth as
lead-time increases. Moreover, safety stocks do appear to help mitigate overall average backorder
levels by an approximately constant amount no matter the length of the lead-time. Thus,
companies may be able to set safety stock levels independently of lead-time if they face similar

conditions to those modeled (e.g., no lost orders, MRP freezes for the length of the lead-time, etc.).
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6 - Analysis of Ending Inventories

As noted in Chapter 4, average ending inventories for a jointly, asymmetrically required
component are nearly identical to the average ending inventories of a component required for only
one end product. Chapter 6 will investigate whether safety stock, demand variability or simple
random error causes the observed result. Chapter 6 will also display the impacts of demand

variability and safety stock levels on ending inventories for end products as well as components.

6.1 - Lead-Time Impact on End Products and Components

The general pattern observed in Chapter 4 shows that ending inventories grow as a function
of lead-time for both end products and components. The following sections breakdown the impacts
of demand variability and safety stocks on ending inventory levels at the lead-times from seven to

forty-two days.

6.2 - Demand Variance Impact on Components Across Safety Stock Levels

Figures 6.2.1 through 6.2.4 display the average ending inventory level per day for
components C, D, E and F. In each graph, the two trend lines show the changes in trend due to end
product demand variability at standard deviations 10 and 15. End product demand variability

directly impacts component demand as shown in the BOM (see section 3.1).
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Figure 6.2.1: Average Ending Inventory of Component C at Demand Variability 10 and 15 across Lead-Time in Days
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Figure 6.2.4: Average Ending Inventory of Component F at Demand Variability 10 and 15 across Lead-Time in Days
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Figures 6.2.1 through 6.2.4 all display the same general pattern. At a lead-time of seven
days, the difference in average ending inventory due to demand variability level is very small. As
lead-time grows, the difference between the average ending inventory due to changes demand
variability grows at every lead-time level. While both demand variability 10 and 15 show continued
acceleration in the growth of average ending inventory, demand variability 15 shows a much faster
rate of acceleration. For example, the average ending inventory of component F grew from 113 at a
seven day lead-time to 537 units at a forty-two day lead-time at a demand variability of 10. At
demand variability 15, the average ending inventory of component F grows from 153 units at a
seven day lead-time to 871 units at a forty-two day lead-time. In percentage terms, average ending
inventory grows by 376% and 469% for demand variability 10 and 15, respectively.

While the present data cannot demonstrate whether the growth rate is exponentially
growing forever, the pattern within the investigated seven to forty-two day lead-time certainly
indicates worsening inventory levels as a function of lead-time. High demand variability simply

exacerbates an already severe inventory growth problem.

6.3 - Safety Stock Impact on Components across Demand Variability Levels

Figures 6.2.1 through 6.2.4 display the average ending inventory level per day for components C, D,

E and F at each safety stock levels of 0% and 20% of average gross daily requirements.
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Figure 6.3.1: Average Ending Inventory of Component C at Safety Stocks 0% and 20% of Gross Daily Requirements

www.manaraa.com



44

200
150 (Average Ending Inventory of Componer}[).

160 ]

P

},4/

_\'\

Average Unit Ending Inventory PerDay
o
(=]

Figure 6.3.2: Average Ending Inventory of Component D at Safety Stocks 0% and 20% of Gross Daily Requirements
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Figure 6.3.3: Average Ending Inventory of Component E at Safety Stocks 0% and 20% of Gross Daily Requirements
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Figure 6.3.4: Average Ending Inventory of Component F at Safety Stocks 0% and 20% of Gross Daily Requirements
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Safety stock appears to generate a constant increase in average ending inventory at every
level of lead-time. Average backorder levels show a similar magnitude reduction due to increased
levels of safety stock in section 5.5. Of course, the impact of increased safety stock is an increase in
component inventory levels, which directly lowers the chance of a backorder for the component—
the classic cost trade-off between inventory and backorders/lost sales.

In contrast to average ending inventory pattern of divergence at different levels of demand
variability seen in section 6.2, the average ending inventory levels at each safety stock level neither
converge nor diverge. Once again, demand variability causes different rates of growth at different

lead-times while safety stock has a nearly constant effect at each lead-time.
6.4 - Ending Inventory Analysis for Components

Figures 6.4.1 through 6.4.4 graphically display impacts on backorders due to changes in both

demand variability and safety stock level combinations.
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Figure 6.4.1: Average Ending Inventory of Component C at all Safety Stock and Demand Variability Levels across

Lead-Time in Days
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Figure 6.4.2: Average Ending Inventory of Component D at all Safety Stock and Demand Variability Levels across

Lead-Time in Days

1000

Average Ending Inventory Component E
Across DV and SS Levels A

700
600 /
<00 —+—DV10550
/ —B—DV105520
400 / /
—4—DV15550
300

200 W ——DV15 5520
Eacl
o V

Q00

Average Unit Ending inventory Per Day

0 5 10 15 20 25 30 35 40 45

Lead-Time in Days

Figure 6.4.3: Average Ending Inventory of Component E at all Safety Stock and Demand Variability Levels across
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Figure 6.4.4: Average Ending Inventory of Component F at all Safety Stock and Demand Variability Levels across

Lead-Time in Days

Unlike the average backorder levels, which show convergence of some treatment levels, the
ending inventories display no such convergence. In fact, all ending inventories grow as lead-time
grows. The difference is one of growth rate. Demand variability appears to be a major driving force
behind the growth rate of ending inventory levels no matter the safety stock level. Safety stock
does appear to provide a buffer but only by a roughly constant amount. Hence, once again, safety
stock determination appears to be somewhat independent of lead-time under the simulation’s

assumptions.

6.5 - Conclusions about Ending Inventories

The results of Chapters 5 and 6 distinctly show the trade-off between ending inventories
and backorders. While backorders show diminishing growth rates as a function of lead-time, the
ending inventories show the opposite trend. Ending inventories consistently grow as a function of
lead-time regardless of safety stock levels or demand variability. Increased safety stock and demand
variability merely increases the growth of ending inventory. As noted in section 6.4, the demand
variability directly causes accelerated growth rates of ending inventory while safety stock adds a
roughly constant amount at each level of lead-time.

Quantitatively, component average ending inventories often grow by 400% or more as lead-

time grows. For instance, the average ending inventory for component C with demand variability 10
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and safety stock of 0% of gross daily component requirements grows from an average ending
inventory level of 134 units per day at a lead-time of seven days to 699 units at a forty-two day lead-
time —a 422% increase in average ending inventory due to lead-time.

In sum, manufacturers in relatively high demand variability industries do face even more
potential of high ending inventories. Unlike the average backorder levels of Chapter 5, the average
ending inventory levels do not diminish in growth rate. To the contrary, average ending inventory
shows a pattern of accelerating growth as a function of increasing lead-times. Additionally, safety
stocks only increase the average ending inventory by a relatively constant amount at each lead-time
level. Thus, once again, companies may be able to set safety stock levels independently of lead-time
if they face similar conditions to those modeled (e.g., no lost orders, MRP freezes for the length of

the lead-time, etc.).

www.manaraa.com



49

7 - Formal Statistical Analysis of Lead-Time, Demand Variability and
Safety Stock Main Effects

Chapters 4 through 6 of this research focus on the practical meaning of the simulation
results. Chapter 7 focuses on the statistical significance of the simulation’s main effects experiment.
In each of the following sections, an analysis of the statistically significant results appears as output

from JMP (a JAVA based program from the SAS Corporation).

7.1 - Overall Model Analysis - Significant Effects and Interactions

Before each least-squares means level can be examined thoroughly, the full model with all
possible interactions must be checked. Section 7.1 details the full factorial ANOVA models for each
response from backorders of end products through ending inventories of components. In each case,
a full factorial model shows the overall results followed by a reduced model with insignificant effects

removed. Interactions without highly significant p-values (i.e., p-values < 0.001) are removed.

7.1.1 - Backorder of End Product A

The full model adjusted R?, F-statistic and individual significance tests appear in figure

7.1.1.1.

¥| Summary of Fit ¥ Effect Tests
RSguare 0.982804 i
RSquare Adj 0.978795 Source F Ratic Prob>=F
Root Mean Square Error 5.072637 Cemand Var 2620804  <.0001*
Wean of Response 1026796 Lead-Time 1000.781 = 0001%
Observations (or Sum Wats) 120 Demand Var*Lead-Time 34827  0.0062°

| Analysis of Variance Saftey Stock 2322891  <0001*
Source DF Sumof Sguares Mean Sguare F Ratio Demand Var*Saftey Stock 0.1251 0.7233
Model 23 14193681 617117 239.827% - ' '
Error 95 547024 2573 ProbsF Lead-Time*Saftey Stock 0.0269  0.9997
C. Total 119 144407 05 <.0001* CDemand Var*Lead-Time*Saftey Stock 0.0165  0.9999

Figure 7.1.1.1: Backorder of End Product A Fit and Effects Significance Full Model

The adjusted R” of 97.8% and F-statistic of 239.83 with accompanying p-value < 0.0001
indicate that at least some factors are highly significant in explaining the variability in average
backorder level for end product A. The individual effect F-tests show that demand variability, lead-
time and safety stock are all highly statistically significant with p-values less than 0.0001. The

interaction of demand variability with lead-time is also fairly significant with a p-value of 0.0062 but
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not enough for inclusion against a required p-value of less than 0.001. A reduced model appears in

Figure 7.1.1.2.

¥ Summary of Fit

RSquare 097973

RSquare Adj 0.973463

Root Mean Square Error S.11E281

Mean of Response 102.6796

Observations (or Sum Wats) 120

¥ Analysis of Variance ¥ Effect Tests

Source DF SumofSquares Mean Square F Ratio Source FRatic Prob=F
Model 7 141479.90 20211.4 7733403  pemand Var | 2580423 = 0001t
L - i 261 Prob=F | pad Time ~ 9853275  <0001*
C. Total 119 144407.05 < 0001*

Saftey Stock 2287022 = 0001*

Figure 7.1.1.2: Backorder of End Product A Fit and Effects Significance Reduced Model
The adjusted R® barely changed while the F-statistic improved. The reduced model appears
to be highly statistically significant for explaining variability in average backorders for end product A.

7.1.2 - Backorder of End Product B

The full model adjusted R?, F-statistic and individual significance tests appear in figure 7.1.2.1.

¥ Summary of Fit ¥ Effect Tests
RSguare 0.969553
RSquare Adj 0.952438 Source F Ratio Prob=F
Root Mean Square Error 6251604 Demand Var 109 4857 = 0001*
st 9340988 Lead-Time 564.4064  <.0001*
Observations (or Sum Wats) 120 :
= = Demand Var*Lead-Time 1.0578 0.3887
¥ Analysis of Variance
- Saftey Stock 134.4247 < 0001*
Source DF SumofSguares Mean Sguare F Ratio .
Model 23 120066.01 535026 133.5680 Demand Var*Saftey Stock 01452  0.7002
Error 95 375198 39.08 Prob=F Lead-Time*Saftey Stock 0.0365 0.99593
C. Total g 123817.99 <.0001* Demand Var*Lead-Time*Saftey Stock 0.0103  1.0000

Figure 7.1.2.1: Backorder of End Product B Fit and Effects Significance Full Model

The adjusted R” of 96.2% and F-statistic of 133.6 with accompanying p-value < 0.0001
indicate that at least some factors are highly significant in explaining the variability in average
backorder level for end product B. The individual effect F-tests show that demand variability, lead-

time and safety stock are all highly statistically significant with p-values less than 0.0001. None of
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the interaction effects show any statistically significant effects. A reduced model appears in Figure

7.1.2.2.

¥ Summary of Fit

R=quare 0.957907
RSguare Adj 0.965901
Root Mean Sguare Error 5.0956433
Mean of Response 5345935
Observations (or Sum Wats) 120
*| Analysis of Variance ¥ Effect Tests
Source DF Sumof Sguarez Wean Sguare F Ratio Source F Ratio Prob=F
Model T 1159844 33 171208 4825551 Demand Var 120.6076 = 0001*
Error 12 3573.66 355 Prob=F Lead-Time 621.8396  <.0001*
C. Total 119 123817.99 =, 0001* Saftey Stock 148 0799 < 0001®

Figure 7.1.2.2: Backorder of End Product B Fit and Effects Significance Reduced Model

Both the adjusted R and F-statistic improved. The reduced model appears to be highly

statistically significant for explaining variability in average backorders for end product B.

7.1.3 - Backorder and Ending Inventory of Component C

The backorder’s full model adjusted R?, F-statistic and individual significance tests for

average backorder of component C appear in figure 7.1.3.1.

*| Summary of Fit ¥ Effect Tests
R 0.953892
Rzz:: Ad] 0.942069 Source F Ratio  Prob = F
Root Mean Square Error 3279989 Demand War 1047716 <0001
Mean of Response 3848724 Lead-Time 347 SRR < 0001*
Observations (or Sum Wats) 120 Demand Var-Lead-Time 47524  0.0008*
j e Saftey Stock 1437103 <0001
Source DF Sumof Squares Mean Sgquare F Ratio Demand Var*Saftey Stock 0.0584 0.8095
Model 23 2141554.5 93111.1  86.5479 )
Error a5 1032799 10758 ProbsF Lead-Time*Saftey Stock 0.0453 0.9983
C. Total 119 2244834 5 = 0001% Demand Var*Lead-Time*Saftey Stock 0.02F7  0.59996

Figure 7.1.3.1: Backorder of Component C Fit and Effects Significance Full Model

The adjusted R” of 94.3% and F-statistic of 86.5 with accompanying p-value < 0.0001 indicate
that at least some factors are highly significant in explaining the variability in average backorder
level for component C. The individual effect F-tests show that demand variability, lead-time and

safety stock are all highly statistically significant with p-values less than 0.0001. The interaction of
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demand variability with lead-time is also statistically significant with a p-value of 0.0006. A reduced

model appears in Figure 7.1.3.2.

¥ Summary of Fit

RSquare 0.953785
RSguare Adj 0.943507
Root Mean Square Error 31.13665
Mean of Rezponse 384 8724 o
Observations (or Sum Wats) 120 ¥ Effect Tests

ool el e Source F Ratio Prob=F
Source DF Sumof Sguares Mean Sguare F Ratio Demand Var 1168.2638 < 0001*
Model 12 21410985 178425 184.0388 Lead-Time 331.2743 <0001
Error 107 103735.5 859  Prob=F Saftey Stock 159.473F <0001
C. Total 118 22448345 =.0001*  Demand VarLead-Time 52737  0.0002*

Figure 7.1.3.2: Backorder of Component C Fit and Effects Significance Reduced Model

The adjusted R” reduced slightly while the F-statistic improved. All factors and interactions
appear to be highly statistically significant for explaining variability in average backorders for
component C.

The ending inventory full model adjusted R?, F-statistic and individual significance tests for

average ending inventory of component C appear in figure 7.1.3.3.

¥| Summary of Fit ¥| Fffect Tests
RSquare 0973755
RSquare Adj 0.973655 Source F Ratio Prob = F
Root Mean Square Error 45.94709 Demand War 635. 1960 <. 0001*
Mean of Response 5306577 Lead-Time 590 7855 = 0001
Observations (or SumWats) 120 Demand Var*Lead-Time 455015 <0001*
e s e Saftey Stock 1059138 <.0001*
Source DF Sumof Sguares Mean Sguare F Ratio Demand VarSaftey Stock 0.0285 0.8663
Model 23 97476555 423811 182.2882 - ’ - ’
Error - 3115868 2304 ProbsF Lead-Time*3aftey Stock 0.0221 0.9995
C. Total 119 9959242 3 = 0001* Demand Var*Lead-Time*Saftey Stock  0.0135  0.959%

Figure 7.1.3.3: Ending Inventory of Component C Fit and Effects Significance Full Model

The adjusted R” of 97.3% and F-statistic of 192.3 with accompanying p-value < 0.0001 indicate that
at least some factors are highly significant in explaining the variability in average ending inventory
level for component C. The individual effect F-tests show that demand variability, lead-time and

safety stock are all highly statistically significant with p-values less than 0.0001. The interaction of
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demand variability with lead-time is also statistically significant with a p-value of less than 0.0001. A

reduced model appears in Figure 7.1.3.4.

¥| Summary of Fit

RSquare 0978709
RSquare Adj 0.976321
Root Mean Square Error 44 51635
Mean of Response 5806577 ¥ Effect Tests
Observations (or Sum Wats) 120 .

= = Source F Ratio Prob=F

¥ Analysis of Variance
Demand Var 706.457F  <.0001*
Source DF Sumof Squarezs Mean Square F Ratio . = -
| = =

Model 12 O747199.9 812267 409.8827 SEEEIE IILE Lo .
Error 107 212042.4 1982 prop»-F  —aftey Stock Slemie il
C. Total 119 00502423 = 0001% Demand Var*Lead-Time 50.6063 <. 0001*

Figure 7.1.3.4: Ending Inventory of Component C Fit and Effects Significance Reduced Model

Both the adjusted R and the F-statistic improved. All factors and interactions in the reduced model
appear to be highly statistically significant for explaining variability in average ending inventory for

component C.

7.1.4 - Backorder and Ending Inventory of Component D

The backorders full model adjusted R?, F-statistic and individual significance tests for

average backorder of component D appear in figure 7.1.4.1.

¥ Summary of Fit

¥ Effect Tests

RSquare 0.950434
RSquare Adj 0.950955 Source F Ratio Prob=F
Root Mean Square Error 3.899757 Demand War 121 BRa7 = 0001*
Mean of Response 55.85684 .
Obs=ervations (or Sum VWats) 120 Lead-Time 407.1649 =.0001*

p . Demand Var*Lead-Time 58433 <. 0001*

¥| Analysis of Variance
- Saftey Stock 1425917  <.0001*

Source DF Sum of Squares  Wean Sguare F Ratio . c
Model 23 35440.087 154087 10131gz  Demand VartSaftey Stock 0.1504  0.5990
Error 95 1459 978 1521  Prob>F Lead-Time*Saftey Stock 0.0987  0.9921
Tl G ITLILLED <0001*  Demand Var*Lead-Time*Saftev Stock 00288  0.9995

Figure 7.1.4.1: Backorder of Component D Fit and Effects Significance Full Model

The adjusted R” of 95.1% and F-statistic of 101.3 with accompanying p-value < 0.0001 indicate that
at least some factors are highly statistically significant in explaining the variability in average
backorder level for component D. The individual effect F-tests show that demand variability, lead-

time and safety stock are all highly statistically significant with p-values less than 0.0001. The
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interaction of demand variability with lead-time is also statistically significant with a p-value of

0.0001. A reduced model appears in Figure 7.1.4.2.

¥ Summary of Fit
RSquare
RSquare Adj
Root Mean Sguare Error
Mean of Response
Observations (or Sum Wats)

¥ Analysis of Variance

0.960107
0.955633
3.705088
55.85684

120

Source DF Sum of Squares
Model 12 35428.022
Error 107 1472.043
C. Total 119 36900.065

Mean Square

F Ratio

285234 2145996

13.76

Prob = F
<.0001*

¥| Effect Tests

Source
Demand Var
Lead-Time
Saftey Stock

Demand Var*Lead-Time

F Ratio Prob=F
1347417 <. 0001*
450.0067  <.0001*
1876277 <. 0001*

6.4855  =.0001*

Figure 7.1.4.2: Backorder of Component D Fit and Effects Significance Reduced Model

Both the adjusted R” and the F-statistic improved. All remaining factors and interactions appear to

be highly statistically significant for explaining variability in average backorders for component D.

The ending inventory full model adjusted R?, F-statistic and individual significance tests for

average ending inventory of component D appear in figure 7.1.4.3.

¥ Summary of Fit

RSguare 0.978935
RSquare Adj 0.973888
Root Mean Square Error 8618793
Mean of Response 100.0459
Observations (or Sum Wats) 120

¥ Analysis of Variance

Source DF Sumof Sguares Mean Sguare
Model 23 33140419
Errar 96 7131.22
C. Total 119 338535.42

F Ratio

144089 183.9712

743

Prob = F
=.0001*

¥ Effect Tests

Source

Demand “ar

Lead-Time

Demand Var*Lead-Time
Saftey Stock

Demand Var*Saftey Stock

Lead-Time*Saftey Stock

Demand Var*Lead-Time*Saftey Stock

F Ratio Prob=F
714 2608  <.0001*
593 2038  <.0001*

454091 <. 0001
53.3911 <. 0001

0.0308 0.8511

0.0202 0.9993

0.0061 1.0000

Figure 7.1.4.3: Ending Inventory of Component D Fit and Effects Significance Full Model

The adjusted R” of 97.4% and F-statistic of 193.9 with accompanying p-value < 0.0001

indicate that at least some factors are highly significant in explaining the variability in average

ending inventory level for component D. The individual effect F-tests show that demand variability,

lead-time and safety stock are all highly statistically significant with p-values less than 0.0001. The

interaction of demand variability with lead-time is also statistically significant with a p-value of less

than 0.0001. A reduced model appears in Figure 7.1.4.4.
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¥ Summary of Fit

RSguare 0.978399
RSguare Adj 0.976533
Root Mean Sguare Error 8.170662
Mean of Response 100.0469 ¥ Effect Tests
Observations (or Sum Wats) 120 .
N (f'u' nE Source F Ratic  Prob=F
nalysis of Variance
y Demand Var 7947686  «<.0001*
Source DF Sumof Sguarez Wean Sguare F Ratio . -
| =
Model 12 33138213 27616.0 413.6628 —smlE Tt e
— o o 668 pPopsF  Saftey Stock 59.4083  <.0001*
C. Total 119 338535.42 <.0001* Demand Var®Lead-Time 505287  =.0001*%

Figure 7.1.4.4: Ending Inventory of Component D Fit and Effects Significance Reduced Model

Both the adjusted R? and the F-statistic improved. All factors and interactions in the

reduced model appear to be highly statistically significant for explaining variability in average ending

inventory for component D.

7.1.5 - Backorder and Ending Inventory of Component E

The backorder’s full model adjusted R?, F-statistic and individual significance tests for

average backorder of component E appear in figure 7.1.5.1.

¥ Summary of Fit ¥ Effect Tests
RSguare 0.943796
RSquare Adj 0930331 Source F Ratio Prob=F
Root Mean Square Error 2205363 Demand Var 124 3401 = 0001*
WMean of Response 2506253 Lead-Time 272 3244 = 0001
Ob: fi Sum Wats) 120

. ;’”‘I'a o (::J it Demand Var*Lead-Time 15632 01778

nalys’s of Yarance Saftey Stock 117.8971  «.0001*

Source DF Sum of Sguares Mean Square F Ratio
Model 23 784051.87 40892 700001 Demand VariSaftey Stock LLis it
Error 95 46690.82 4364 prob=f Lead-Time*3aftey Stock 0.0625 05973
C. Total 18 83074259 =0001*  Demand Var‘Lead-Time*Saftey Stock  0.0117  1.0000

Figure 7.1.5.1: Backorder of Component E Fit and Effects Significance Full Model

The adjusted R” of 93.0% and F-statistic of 70.0 with accompanying p-value < 0.0001 indicate
that at least some factors are highly statistically significant in explaining the variability in average
backorder level for component E. The individual effect F-tests show that demand variability, lead-
time and safety stock are all highly statistically significant with p-values less than 0.0001. No

interaction effects show statistically significant results. A reduced model appears in Figure 7.1.5.2.
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¥ Summary of Fit

RSquare 0.938988

RSguare Adj 0.935174

Root Mean Square Error 212732

Mean of Response 2506253

Observations (or Sum Wats) 120 ¥| Fffect Teste

¥ Analysis of Variance .

Source DF Sum of Sguares Mean Sguare F Ratio Source F Ratio Prob = F
Model 7 T80057.21 111437 2462424 e s
B 12 £0555.43 453 Prob>F Lead-Time 202 6720 <. 0001*
C. Total 119 830742.69 <.0001* Saftey Steck 1267081 <.0001*

Figure 7.1.5.2: Backorder of Component E Fit and Effects Significance Reduced Model

Both the adjusted R? and the F-statistic improved. All remaining factors and interactions
appear to be highly statistically significant for explaining variability in average backorders for
component E.

The ending inventory full model adjusted R?, F-statistic and individual significance tests for

average ending inventory of component E appear in figure 7.1.5.3.

¥| Summary of Fit *| Effect Tests
RSqguare 0.83182
RSguare Adj 0977464 Source F Ratio Prob=F
Root Mean Sguare Error 31.71531 Demand Var 535 4427 <. 0001*
Mean of Response 417.0338 Lead-Time 852 3315 < 0001
Observations (or SumWats) 120 Demand Var-Lead-Time 385072 <0001*
V| Analysis of Variance Saftey Stock 944726  <.0001*
Source DF Sumof Sguarez Mean Sguare F Ratio Demand Var*Saftey Stock 0.0128 0.9101
Model 23 52149358 276736 2254152 . ¥ ’ ' c
Error o6 0RSAD & 1006 PropsF Lead-Time*Saftey Stock 0.0302  0.9595
C. Total 118 5311488 4 =.0001* Demand Var*Lead-Time*Saftey Stock 0.0058  1.0000

Figure 7.1.5.3: Ending Inventory of Component E Fit and Effects Significance Full Model

The adjusted R” of 97.7% and F-statistic of 225.4 with accompanying p-value < 0.0001
indicate that at least some factors are highly significant in explaining the variability in average
ending inventory level for component E. The individual effect F-tests show that demand variability,
lead-time and safety stock are all highly statistically significant with p-values less than 0.0001. The
interaction of demand variability with lead-time is also statistically significant with a p-value of less

than 0.0001. A reduced model appears in Figure 7.1.5.4.
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¥ Summary of Fit

RSquare 0.981724

RSquare Adj 0.979741

Root Mean Square Error 30.07082

Mean of Response 417 0338

L 4

Observations (or Sum Wats) 120 Effect Tests
¥ Analysis of Variance Source

Source DF Sumof Squares  Mean Sguare F Ratio Demﬂn'.j Var

Model 12 52147426 434562 4s05717  Lead-Time

Error 107 967558 904 Prob=F Saftey Stock

C. Total 119 53114984 < 0001* Demand Var*Lead-Time

57

F Ratio Prob=F

706.8330 <0001
G48.1531 <. 001*
105.0873  <.0001%

42,8337 <.0001*

Figure 7.1.5.4: Ending Inventory of Component E Fit and Effects Significance Reduced Model

Both the adjusted R? and the F-statistic improved. All factors and interactions in the

reduced model appear to be highly statistically significant for explaining variability in average ending

inventory for component E.

7.1.6 - Backorder and Ending Inventory of Component F

The backorder’s full model adjusted R?, F-statistic and individual significance tests for

average backorder of component F appear in figure 7.1.6.1.

¥| Summary of Fit

RSquare 0.904774
RSquare Adj 0.88196
Root Mean Square Error 2295048
Mean of Response 217.1451
Observations (or Sum Wats) 120

¥| Analysis of Variance

Source DF Sum of Sguares Mean Sguare
Model 23 42044257 208388
Error 55 50565.55 526.7
C. Total 119 531008.12

F Ratio
35,6579
Prob = F
= 0001*

¥ Effect Tests

Source
Demand Var
Lead-Time

Demand Var*Lead-Time

Saftey Stock

Demand VartSaftey Stock
Lead-Time*Saftey Stock

F Ratio  Prob=F
61.3854  <0001*
1554528  <.0001*
1.1845 0.3225
67.1354  <0001*
0.0695  0.7927
0.0626 0.9973

Demand Var*Lead-Time*Saftey Stock 0.0085  1.0000

Figure 7.1.6.1: Backorder of Component F Fit and Effects Significance Full Model

The adjusted R” of 88.1% and F-statistic of 39.7 with accompanying p-value < 0.0001 indicate

that at least some factors are highly statistically significant in explaining the variability in average

backorder level for component F. Interestingly, component F average backorder represents the only

response to achieve less than a 90% adjusted R’. The individual effect F-tests show that demand

variability, lead-time and safety stock are all highly statistically significant with p-values less than

0.0001. No interactions proved statistically significant. A reduced model appears in Figure 7.1.6.2.
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¥ Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wats)

¥ Analysis of Variance

0.858478
0.892133
21.93927
217.1451

120
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¥ Effect Test:

Source DF Sum of Sguares Wean Sguare F Ratio Source
WModel T 477098.97 68157.0 141.6009 Demand “ar
Error 112 53909.15 481.3 Prob=F Lead-Time

C. Total 119 531008.12 <.0001* Saftey Stock

67.1745
1701130
73.4668

Prob=F
<. 0001*
<. 0001*
<. 0001*

Figure 7.1.6.2: Backorder of Component F Fit and Effects Significance Reduced Model

Both the adjusted R” and the F-statistic improved. All remaining factors and interactions

appear to be highly statistically significant for explaining variability in average backorders for

component F.

The ending inventory full model adjusted R?, F-statistic and individual significance tests for

average ending inventory of component F appear in figure 7.1.6.3.

¥ Summary of Fit
RSguare
RSguare Adj
Root Mean Square Error
Mean of Response
Cbservations (or Sum Wats)

¥ Analysis of Variance

0.984514
0.980803
30.42648
406.3278

120

Source DF Sumof Sguares Mean Sguare F Ratio
WModel 23 5549003 4 245652 2653488
Error o5 83874.0 926 Prob=F
C. Total 119 57388724 <.0001*

¥| Effect Tests

Source

Demand Var

Lead-Time

Demand Var-Lead-Time
Saftey Stock

Demand Var*saftey Stock
Lead-Time*Saftey Stock

Demand Var*Lead-Time*Saftey Stock

F Ratio
5919.3820
958.0733

65.0895
67.5818

0.0395

0.0356

0.0045

Figure 7.1.6.3: Ending Inventory of Component F Fit and Effects Significance Full Model

Prob = F
= 0001*
= 0001*
= 0001*
= 0001*
0.8428
0.9993
1.0000

The adjusted R” of 98.1% and F-statistic of 265.34 with accompanying p-value < 0.0001

indicate that at least some factors are highly significant in explaining the variability in average

ending inventory level for component F. In contrast to the low adjusted R” for the average

backorder levels of component F, the adjusted R” for the average ending inventory for component F

is among the highest of all adjusted R*values. The individual effect F-tests show that demand

variability, lead-time and safety stock are all highly statistically significant with p-values less than
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0.0001. The interaction of demand variability with lead-time is also statistically significant with a p-

value of less than 0.0001. A reduced model appears in Figure 7.1.6.4.

¥ Summary of Fit

RSquare 0934475
RSquare Adj 0882733
Root Mean Square Error 28.8564
Mean of Response 406.3278 ¥ Effect Tests
Observations (or Sum Wats) 120 -

+[ Analysis of Variance Source F Ratic Prob=F

- Demand Var 1022151 <. 0001*

Source DF Sum of Sguares Mean Square F Ratio i
Model 12 5649774.4 470815 ses.arzg  Lead-Time 1085.188  <.0001*
Error 107 89098.0 833 pob=F  Saftey Stock 751382 <.0001%
C. Total 119 57388724 =.0001* Demand Var*Lead-Time 723653  <.0001%

Figure 7.1.6.4: Ending Inventory of Component F Fit and Effects Significance Reduced Model

Both the adjusted R® and the F-statistic improved. All factors and interactions in the
reduced model appear to be highly statistically significant for explaining variability in average ending

inventory for component F.

7.1.7 - Conclusions from Full Models

Every response shows statistically significant results. In only one model did the adjusted R®
fall below 90%--a surprisingly high figure given the unaccounted for error due to poor forecasting.
The reduced models all contained the main effects of demand variability, lead-time and safety stock.

On the other hand, the only interaction term that shows significant results in some of the
models is demand variability by lead-time. The interaction of demand variability by lead-time is
observed by the diverging lines in the graphics of sections 5.2 and 6.2. In most cases, the interaction
effect of demand variability by lead-time has smaller F-statistics than the main effects.
Interpretation of the interaction is actually fairly simple. The interaction shows that while
backorders and ending inventory grow as a function of lead-time, they actually grow faster when
demand variability is high than when demand variability is low (i.e., at demand variability has a

standard deviation 15 instead of 10).

7.2 - Significant Effects Impact on End Products

Lead-time, demand variability and safety stock level all prove highly statistically significant in

helping to explain variability in average backorder levels and average ending inventory levels for
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every end product and component (see section 7.1). Each of the following subsections of section

7.2 contains a breakdown of the least-squares means (i.e., the average impact on the mean due to

each experimental factor) for each response backorder and ending inventory level of end products

and components.

7.2.1 - Backorder of End Product A

Statistical analysis of average backorders of end product A shows that lead-time, demand

variability and safety stock are all highly statistically significant. The interaction of demand

variability and lead-time is also somewhat statistically significant but not enough for inclusion in this

discussion.

Lead-time LSMeans for end product A appear in Figure 7.2.1.1.

¥ Least Squares Means Table

Lewvel
o7
14
Py
28
35
42

Least Sg Mean
44 20388
79.016569

104.59971
118.38228
131.56510
140702595

Std Error
1.1431364
1.1431364
1.1431364
1.1431364
1.1431364
1.1431364

¥ = L5Means Differences Tukey HSD
a= 0.050 Q= 239066

Lewvel Least Sq Mean
42 A 140. 70899
35 B 131.56610
28 C 118.38226
21 D 101.59971
14 E 70.01660
o7 F 44 20333

Levelz not connected by =ame letter are significantly different.

Figure 7.2.1.1: Lead-time LSMeans of Backorders for End Product A

The Tukey Honestly Significant Difference (Tukey HSD) shows that every level of lead-time is

statistically significantly different from all others with an overall alpha error rate of 0.05 or 5%. The

increase in average backorder level due to lead-time grows at a diminishing rate.

Demand variability LSMeans for end product A appear in Figure 7.2.1.2.
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¥ Least Squares Means Table

Lewel LeastSq Mean Std Error Mean
10 95.18254 0.65999010 95.183
15 110.17626 065999010 110.176

¥ ™ |LSMeans Differences Student's t
o= 0.050 t= 1.98137

Lewvel Least Sg Mean
15 A 110.17626
10 B 95.18204

Levels not connected by same letter are significanthy different.

Figure 7.2.1.2: Demand Variability LSMeans of Backorders for End Product A

As already shown by the F-statistic in section 7.1.1, the different levels of demand variability
are statistically significantly different. On average, a move from demand variability 10 to demand
variability 15 causes approximately a 15 unit jump in the average backorders of end product A.

Safety stock LSMeans for end product A appear in Figure 7.2.1.3.

¥ Least Squares Means Table

Level LeastSgMean Std Error Mean
0 109.73721 0.65995010 109.737
0.2 9562199 0.65599010 95.622

¥ = LSMeans Differences Student's t
o= 0.050 t= 1. 98137

Lewvel Least g Mean
0 A 109.73721
0.2 B 95.62199

Levels not connected by same letter are significanthy different.

Figure 7.2.1.3: Safety Stock LSMeans of Backorders for End Product A

Once again, as already shown by the F-statistic in section 7.1.1, the different levels of safety
stock are statistically significantly different. On average, moving from a safety stock of 0% to 20% of
gross daily component requirements causes an approximately 14 unit drop in the average
backorders of end product A.

Overall, the LSMeans for lead-time have by far the largest impact on average backorders of
end product A as shown by the dramatically increasing LSMeans at each level of lead-time. Demand

variability and safety stock have relatively similar magnitude LSMeans impacts on the average

backorder level of end product A.
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7.2.2 - Backorder of End Product B

Examination of average backorders of end product B shows that lead-time, demand
variability and safety stock are all highly statistically significant. No interactions are close to
statistically significant.

Lead-time LSMeans for end product B appear in Figure 7.2.2.1.

¥ =L 5Means Differences Tukey HSD
a= 0.050 Q= 2.35956

¥ Least Squares Means Table Level Least Sq Mean
Level Least Sq Mean StdError 2 A 127 27885
07 39.67897 1.3318980 ° B 120 23878
14 71.37397 1.3318980 2% c 109.90752
21 9229101 1.3318990 21 D 92.29101
28 109.80752 1.3318980 14 E 71.37397
35 120.28373 13318980 07 F 39.67297
42 127 27885 1.3318g9p Lewvels not connected by same letter are significantly different.

Figure 7.2.2.1: Lead-time LSMeans of Backorders for End Product B

The Tukey Honestly Significant Difference (Tukey HSD) shows that every level of lead-time is
statistically significantly different from all others with an overall alpha error rate of 0.05 or 5%. As is
the case for end product A, the increase in average backorder level due to lead-time grows at a
diminishing rate for end product B.

Demand variability LSMeans for end product B appear in Figure 7.2.2.2.

¥ Least Squares Means Table

Lewel LeastSq Mean Std Error Mean
10 &7 493355 0768597222 8745984
15 55 441344 076897222 994413

¥ ™ LSMeans Differences Student's t
o= 0.050 t= 1.98137

Lewvel Least S5q Mean
15 A 59441344
10 B &7 493355

Levels not connected by =ame letter are significanthy different.

Figure 7.2.2.2: Demand Variability LSMeans of Backorders for End Product B
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As already shown by the F-statistic in section 7.1.2, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand
variability 15 causes approximately a 12 unit jump in the average backorders of end product B.

Safety stock LSMeans for end product B appear in Figure 7.2.2.3.

¥ Least Squares Means Table

Level LeastSqMean Std Error Mean
0 100.08558 0.78897222  100.087
0.2 86.85311 0.78897222 85.853

¥ = |LSMeans Differences Student's t
o= 0.050 t= 1 98137

Lewvel Least Sq Mean
0 A 100.03658
0.2 B 86.85311

Levelz not connected by =ame letter are significantly different.

Figure 7.2.2.3: Safety Stock LSMeans of Backorders for End Product B

Once again, as already shown by the F-statistic in section 7.1.2, the different levels of safety
stock are statistically significantly different. On average, moving from a safety stock of 0% to 20% of
gross daily component requirements causes approximately a 13 unit drop in the average backorders
of end product B.

In sum, the LSMeans for lead-time have by far the largest impact on average backorders for
end product B as shown by the dramatically increasing LSMeans at each level of lead-time. Demand
variability and safety stock have similar magnitude LSMeans impacts on the average backorder level

of end product B.

7.3 - Significant Effects Impact on Components
7.3.1 - Backorder of Component C

Analysis of average backorders of component C shows that lead-time, demand variability
and safety stock are all highly statistically significant. Moreover, the interaction between demand

variability and lead-time is statistically significant.

Lead-time LSMeans for component C appear in Figure 7.3.1.1.
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¥ ='| SMeans Differences Tukey HSD

¥ Least Squares Means Table o=0.050 Q= 2.50202
Level Least SgMean Std Errpr - Level Least Sq Mean
07 161.19130 5.9623867 :2 i 4;1;22’;
14 204 54101 6.9623667 28 B 463.55488
21 384.06336 6.9623667 5 B e
28 453 55488 60623667 14 D 204 54101
35 494 38261 6.9623667 07 E 161.19130
42 £11.49585 69523667 Lewvels not connected by same letter are significantly different.
¥ LS Means Plot

T00 .

500+

=

o 5500

E = 400

S @300

® o200

100

T T T T T
i) 14 21 28 35 42
Lead-Time

Figure 7.3.1.1: Lead-time LSMeans of Backorders for Component C

Even under a Tukey Honestly Significant Difference (Tukey HSD), almost every level of lead-
time is statistically significantly different from all others with an overall alpha error rate of 0.05 or
5%. At the highest lead-times of 35 and 42 days, the LSMeans are too close to be statistically
significantly different. Asis the case for end products A and B, the increase in average backorder
level due to lead-time grows at a diminishing rate for component C.

Demand variability LSMeans for component C appear in Figure 7.3.1.2.

¥ Least Squares Means Table

Level LeastSq Mean Std Error IMean
10 354 22429 40197243 354224
15 415.52049 40197243 415520

¥ ='| SMeans Differences Student's t
o= 0.050 t= 1.98238

Level Least Sg Mean
15 A 415.520459
10 B 354 22475

Levels not connected by same letter are significantty different.

Figure 7.3.1.2: Demand Variability LSMeans of Backorders for Component C
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As already shown by the F-statistic in section 7.1.3, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand
variability 15 causes approximately a 61 unit jump in the average backorders of component C.

Safety stock LSMeans for component C appear in Figure 7.3.1.3.

¥ Least Squares Means Table

Level LeastSqMean Std Error Mean
0 420.76871 401597243  420.767
0.2 343 97807 40197243 343578

¥ = |LSMeans Differences Student's t
o= 0.050 t= 1.538238

Level Least Sg Mean
0 A 420.76571
0.2 B 343978307

Levels not connected by same letter are significantty different.

Figure 7.3.1.3: Safety Stock LSMeans of Backorders for Component C

As expected due to the F-statistic in section 7.1.3, the different levels of safety stock are
statistically significantly different. On average, moving from a safety stock of 0% to 20% of gross
daily component requirements causes approximately a 72 unit drop in the average backorders of

component C.

Demand variability and lead-time interactions LSMeans for component C appear in Figure
7.3.1.4.
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¥ '='| SMeans Differences Tukey H5D
o= 0.050 Q= 334163

Lewvel Least Sg Mean
15,35 A 524 44747
15,42 A ¥13.47262
10,42 A B 509 51863
1528 A B o01.52432
10,35 B C 454 31774
15,21 C 433.51304
10,28 C 42558543
10,21 D 334 62463
15,14 D 331.448138
10,14 E 25763354
15,07 F 188. 71727
10,07 G 133.66533

Levels not connected by same letter are significanthy different.

¥ LS Means Plot
700

6004 10
§ £ 500] 15+
E = 400
S @300
= © 200

1004

T T T T T
07 14 21 28 35 42
Lead-Time

Figure 7.3.1.4: DV*LT LSMeans of Backorders for Component C

Not all levels of the interaction combinations are statistically significantly different. At high
levels of lead-time, the LSMeans tend to become too close to distinguish statistically. In contrast,
lower levels of lead-time show statistically significant differences regardless of demand variability.
In other words, lead-time is the prime driving force in the difference of the LSMeans while demand
variability plays some role in changing the LSMeans when the lead-time sits in the range of 21-42
days (also seen by the differing slopes past 21 days in the LSMeans plot). Demand variability plays
less of a role in increasing the LSMean backorder level at higher levels of lead-time.

As was the case with the end products, lead-time has by far the largest LSMeans impact on
average backorders for component C as shown by the dramatically increasing LSMeans at each level
of lead-time other than the highest two lead-time levels. Demand variability and safety stock have
somewhat similar magnitude LSMeans impacts on the average backorder level of component C.
Interaction between demand variability and lead-time does play a statistically significant role in

accounting for the variability in average backorder levels. The LSMeans plot in figure 7.3.1.4 (and

www.manaraa.com



67

figure 5.3.1) shows as lead-time grows the slope of the higher demand variability curve decreases at

a more rapid rate than the slope of the low demand variability curve.

7.3.2 - Ending Inventory of Component C

Analysis of average ending inventory of component C shows that lead-time, demand
variability and safety stock are all highly statistically significant. Moreover, the interaction between
demand variability and lead-time is statistically significant.

Lead-time LSMeans for component C appear in Figure 7.3.2.1.

¥ '='| SMeans Differences Tukey H5D

= :. =
¥ Least Squares Means Table o= 0.050 Q= 2.90202

Lewvel Least Sg Mean
Level LeastSqMean Std Error A2 s 0963.136508
i 209.13631 9 9541575 35 B 7G5 40185
14 375.30811 90541575 28 C £32.95539
21 507.99783 9 9541575 ™ D S07.95738
28 632 96639 9 9541575 14 E 37530811
35 705 40165 90541575 07 F 209.13631
42 563.13608 5.9541575 Levels not connected bw =ame letter are sianificanthy different.
¥ LS5 Means Plot
13004
11004
EJ ® 500 .
E § 7007
.E ﬁ 500
E | 3[”]:
w2 100 . . . . .
or 14 21 28 35 42
Lead-Time

Figure 7.3.2.1: Lead-time LSMeans of Ending Inventory for Component C

The Tukey HSD shows that every level of lead-time is statistically significantly different from
all others with an overall alpha error rate of 0.05 or 5%. The increase in average ending inventory
level due to lead-time grows at a nearly constant rate for component C.

Demand variability LSMeans for component C appear in Figure 7.3.2.2.
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¥ Least Squares Means Table

Lewel LeastSq Mean Std Error Mean
10 472 64575 5. 7470355 472646
15 56866072 5. 7470355 633.670

¥ ™ | SMeans Differences Student's t
o= 0.050 t= 1.53238

Lewel Least Sg Mean
15 A 658.66972
10 B 472 64575

Levels not connected by same letter are significanthy different.

Figure 7.3.2.2: Demand Variability LSMeans of Ending Inventory for Component C

As already shown by the F-statistic in section 7.1.3, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand

variability 15 causes approximately a 216 unit jump in the average ending inventory of component
C.

Safety stock LSMeans for component C appear in Figure 7.3.2.3.

¥ Least Squares Means Table

Level LeastSgMean Std Error IMean
0 536 55206 L 7470355 536552
02 624 76342 L 7470355 624763

¥ = LSMeans Differences Student's t
o= 0.050 t= 1.98238

Lewvel Least Sg Mean
0.2 A 624 76342
0 B 536.55206

Levels not connected by same letter are significanthy different.

Figure 7.3.2.3: Safety Stock LSMeans of Ending Inventory for Component C

As expected due to the F-statistic in section 7.1.3, the different levels of safety stock are
statistically significantly different. On average, moving from a safety stock of 0% to 20% of
component requirements causes an approximately 88 unit increase in the average ending inventory

of component C.

Demand variability and lead-time interactions LSMeans for component C appear in Figure
7.3.2.4.
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¥ T L5Means Differences Tukey HSD
o= 0.050 Q= 334163

Lewvel Least Sg Mean
15,42 A 1182 5039
1535 B 947.5318
1528 H F53.6597
10,42 H 743.7683
10,35 D 6432714
15,21 D 5852068
10,28 E 51227
10,21 F 430.6989
15,14 F 423 9756
10,14 G 326.6407
15,07 H 235.0505
10,07 H 179222

Lewels not connected by same letter are significantly different.
¥ LS Means Plot

13004 10 +
w1100 15 =&
500
7003
500
300
100 T T T T T

o7 14 21 28 35 42

Ending Inventory
< LS Mean:

Lead-Time

Figure 7.3.2.4: DV*LT LSMeans of Ending Inventory for Component C

Not all levels of the interaction combinations are statistically significantly different. The lack
of Tukey HSD differences appears to scatter throughout the interaction levels. In other words, lead-
time remains the prime driving force in the difference of the LSMeans. The interaction really shows
that as lead-time grows, higher demand variability leads to a faster overall LSMean growth rate.

Once again, as is the case with the end products, lead-time has by far the largest LSMeans
impact on average ending inventory for a component as shown by the dramatically increasing
LSMeans at each level of lead-time. Demand variability and safety stock have somewhat similar
magnitude LSMeans impacts on the average ending inventory level of component C. Interaction
between demand variability and lead-time does play a statistically significant role in accounting for
the variability in average ending inventory levels. The LSMeans plot in figure 7.3.2.4 (and figure
6.2.1) shows as lead-time grows the slope of the higher demand variability curve increases at a more
rapid rate than the slope of the low demand variability curve. In other words, increased demand

variability plays more of a role in increasing the LSMeans at higher levels of lead-time.
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7.3.3 - Backorder of Component D

Analysis of average backorders of component D shows that lead-time, demand variability
and safety stock are all highly statistically significant. Moreover, the interaction between demand
variability and lead-time is statistically significant.

Lead-time LSMeans for component D appear in Figure 7.3.3.1.

¥ = L5Means Differences Tukey HSD
o= 0.050 Q= 2.80202

¥ Least Squares Means Table Level Least Sg Mean
Level Least SgMean StdError 42 A 74768743
07 26857051 0.82837962 20 B 69.155405
14 44 907462 0.82837962 28 c 63.096552
b 55.355817 082837962 2! o 56.355817
28 §3.096592 0.82837962 14 E 44.907452
a5 §9.155405 0.g2g3796z 07 F 26.857051
42 74 763743 0872937952 Lewvels not connected by same letter are significanthy different.

¥ LS Means Plot
S0

e |
=]
]

Backorder
D LS Means
(%] Ln
[} [}

| |

—
=

T 14 21 28 35 42

Lead-Time:

Figure 7.3.3.1: Lead-time LSMeans of Backorders for Component D

The Tukey HSD shows that every level of lead-time is statistically significantly different from
all others with an overall alpha error rate of 0.05 or 5%. As is the case for component C, the
increase in average backorder level due to lead-time grows at a diminishing rate for component D.

Demand variability LSMeans for component D appear in Figure 7.3.3.2.
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¥ Least Squares Means Table

Level LeastSgMean Std Error Mean
10 51.926518 047384255 519265
15 59787172 047384255 597872

¥ ™ LSMeans Differences Student's t
o= 0.050 t= 1.98238

Lewvel Least Sg Mean
15 A 59787172
10 B 51.926518

Levels not connected by same letter are significanthy different.

Figure 7.3.3.2: Demand Variability LSMeans of Backorders for Component D

As already shown by the F-statistic in section 7.2.4, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand
variability 15 causes approximately a 9 unit jump in the average backorders of component D.

Safety stock LSMeans for component D appear in Figure 7.3.3.3.

¥ Least Squares Means Table

Level LeastSqgMean Std Error Mean
0 60107873 0 47384255 601079
02 51.605817 0 47324255 516058

¥ *'| SMeans Differences Student's t
o= 0.050 t= 1.98238

Lewvel Least Sg Mean
0 A 60107873
02 B 51.605817

Levels not connected by same letter are significanthy different.

Figure 7.3.3.3: Safety Stock LSMeans of Backorders for Component D

As expected due to the F-statistic in section 7.2.4, the different levels of safety stock are
statistically significantly different. On average, moving from a safety stock of 0% to 20% of gross
daily component requirements causes an approximately 8 unit drop in the average backorders of

component D.

Demand variability and lead-time interactions LSMeans for component D appear in Figure

7.3.3.4.
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¥ T'LS5Means Differences Tukey H5D
o= 0.050 Q= 3.34163

Lewvel

15,42 A
10,42 A

1535 A B

10,35
15,26
153,21
10,28
15,14
10,21
10,14
15,07
10,07

BC
BC
cCD

Least Sg Mean
75.862515

73.674971

70.858754

67 452056
67122914
61.934548

39.070270
31.203408

0. 777086

F 33611516
G 31 . 740893
H 21973208

Levels not connected by same letter are significanthy different.
¥ LS Means Plot

80

Backorder
]
o
L=
1

10+

15 =

T
o7

T T T
14 21 28 35

Lead-Time

Figure 7.3.3.4: DV*LT LSMeans of Backorders for Component D

Not all levels of the interaction combinations are statistically significantly different—a

similar result to that seen for component C. At high levels of lead-time, the LSMeans tend to

become too close to distinguish statistically under a Tukey HSD. In contrast, lower levels of lead-

time show statistically significant differences regardless of demand variability. In other words, lead-

time is the prime driving force in the difference of the LSMeans while demand variability plays some

role in changing the LSMeans when the lead-time sits in the range of 21-42 days (also seen by the

differing slopes past 21 days in the LSMeans plot). In other words, demand variability plays less of a

role in increasing the LSMean backorder level at higher levels of lead-time.

In sum, lead-time once again has by far the largest LSMeans impact on average backorders

for component D as shown by the dramatically increasing LSMeans at each level of lead-time.

Demand variability and safety stock have fairly different magnitude LSMeans impacts on the average

backorder level of component D. In fact, demand variability appears to cause a nearly 2.5 fold

greater rise in the LSMeans of ending inventory levels for component C when compared to the

LSMeans impact of safety stock. Interaction between demand variability and lead-time does play a
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statistically significant role in accounting for the variability in average backorder levels of component
D. The LSMeans plot in figure 7.3.3.4 (and figure 5.3.2) displays that the slope of the higher demand
variability curve decreases at a more rapid rate than the slope of the low demand variability curve as

lead-time grows.

7.3.4 - Ending Inventory of Component D

Analysis of average ending inventory of component D shows that lead-time, demand
variability and safety stock are all highly statistically significant. Moreover, the interaction between
demand variability and lead-time is statistically significant.

Lead-time LSMeans for component D appear in Figure 7.3.4.1.

¥ = L5Means Differences Tukey H5D
o= 0.050 = 250202

¥| Least Squares Means Table Level Least Sq Mean
Level LeastSqMean Std Error 42 A 17085241
07 33.58196 1.8270156 35 B 138.01851
14 60.33249 1.8270156 28 c 11185881
21 84 73596 18270156 21 o 84.73588
28 111.95981 1.8270156 14 E 80.33248
35 139.01851 18270156 07 F 33.58188

42 170.65241 18270156 Lewels not connected by same letter are significantly different.

¥* LS5 Means Plot
250
2004
150
1004
5q

0 T T T T T
o7 14 21 23 35 42

Ending Inventory
D LS Means

Lead-Time

Figure 7.3.4.1: Lead-time LSMeans of Ending Inventory for Component D

The Tukey HSD shows that every level of lead-time is statistically significantly different from
all others with an overall alpha error rate of 0.05 or 5%. The increase in average ending inventory
level due to lead-time grows at a nearly constant or slightly increasing rate for component D.

Demand variability LSMeans for component D appear in Figure 7.3.4.2.
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¥ Least Squares Means Table

Lewvel LeastSq Mean

10 79.01939 1.0548270 79.019
15 121.07432 1.0548279  121.074
w| ™| SMeans Differences Student’
o= 0.050 t= 1.98238
Lewvel Least g Mean
15 A 121.07432
10 B 79.01939

Std Error Mean

st

Levels not connected by same letter are significanthy different.

Figure 7.3.4.2: Demand Variability LSMeans of Ending Inventory for Component D

As already shown by the F-statistic in section 7.2.3, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand

variability 15 causes approximately a 42 unit increase in the average ending inventory of component
D.

Safety stock LSMeans for component D appear in Figure 7.3.4.3.

¥ Least Squares Means Table
Level LeastSq Mean

0 04 245738
0.2 105.79583

Std Error Mean
1.0548270 04 298
1.0548279  105.796
¥ ='| SMeans Differences Student’

st
a= 0.050 t= 1.98235

Lewel Least Sg Mean
nz A 105. 79583
0 B 04 29783

Levels not connected by same letter are significanthy different.

Figure 7.3.4.3: Safety Stock LSMeans of Ending Inventory for Component D

As expected due to the F-statistic in section 7.2.3, the different levels of safety stock are
statistically significantly different. On average, moving from a safety stock of 0% to 20% of gross

daily component requirements causes an approximately 12 unit jump in the average ending
inventory of component D.

Demand variability and lead-time interactions LSMeans for component D appear in Figure
7.3.4.4.
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¥ = L5Means Differences Tukey H5D
g= 0.050 Q= 3.34163

Level Least Sg Mean
15,42 A 210.13843
1535 B 170.53090
15,28 C 135.14585
10,42 C 131.16639
10,35 ] 107.50611
15,21 ] 101.48150
10,28 E &8.77368
15,14 F 70.18245
10,21 F 67.99001
10,14 G 50.43245
15,07 GH 38 96627
10,07 H 28.19765

Levels not connected by same letter are significantly different.

¥ LS Means Plot
250

= . 10+
£ gzuu—_ 15
13 S0
E g 150 ]
2 51007
20 50
w <
0 T T T T T
o7 14 21 28 35 42
Lead-Time

Figure 7.3.4.4: DV*LT LSMeans of Ending Inventory for Component D

Not all levels of the interaction combinations are statistically significantly different. The lack
of Tukey HSD differences appears to scatter throughout the interaction levels. In other words, lead-
time remains the prime driving force in the difference of the LSMeans. The interaction does display
that as lead-time grows, higher demand variability leads to a faster overall LSMean growth rate.

As is the case for component C's ending inventories, lead-time has by far the largest
LSMeans impact on average ending inventory for component D as shown by the dramatically
increasing LSMeans at each level of lead-time. Analysis shows that demand variability has
approximately double the impact of safety stock on the LSMeans of ending inventory of component
D. Only end product A requires component D (see section 3.1). Apparently, the demand variability
of end products has a larger impact than safety stock buffers on ending inventories for the uniquely
required component. Interaction between demand variability and lead-time does play a statistically
significant role in accounting for the variability in average ending inventory levels. The LSMeans plot

in figure 7.3.4.4 (and figure 6.2.2) clearly displays that higher demand variability (i.e., demand
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variability 15 instead of 10) leads to accelerating ending inventory growth as lead-time grows. In
other words, increased demand variability plays an increasing role in accelerating the growth of the

LSMeans at higher levels of lead-time.

7.3.5 - Backorder of Component E

Analysis of average backorders of component E shows that lead-time, demand variability
and safety stock are all highly statistically significant. Further, no interaction effects appear to be
statistically significant.

Lead-time LSMeans for component E appear in Figure 7.3.5.1.

¥ = L5Means Differences Tukey HSD
g= 0.030 Q= 2.869966
¥ Least Squares Means Table

Level Least Sq Mean
Level LeastSqMean Std Error 42 A 32572503
o7 115.11428 4 7568316 35 A 31628651
14 197 50254 4 7568316 28 B 20508273
21 25397086 4 7568316 21 C 25397086
28 20508273 4 7568316 14 D 197 50254
35 31626651 4 7568316 o7 E 11511428
42 325.72503 47536883168 |evels not connected by same letter are significanthy different.
¥ LS Means Plot
350+
LW
[ 7
£ Bosp]
g= .
[ ] =
@ 7 150
EI:I ! T T T T T
o7 14 21 28 35 42
Lead-Time

Figure 7.3.5.1: Lead-time LSMeans of Backorders for Component E

The Tukey HSD shows that almost every level of lead-time is statistically significantly
different from all others with an overall alpha error rate of 0.05 or 5%. At the highest lead-times of
35 and 42 days, the Tukey HSD fails to find a statistically significant difference. In other words, the
growth rate of average backorders due to lead-time levels off too much for the LSMeans at the
highest lead-times to show a statistically significant difference.

Demand variability LSMeans for component E appear in Figure 7.3.5.2.
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¥ Least Squares Means Table

Lewvel LeastSq Mean Std Error Mean
10 22817542 27463530 228176
15 273.07423 27463530 273.074

¥ ™ | SMeans Differences Student's t
o= 0.050 t= 1.58137

Lewvel Least Sq Mean
15 A 273.07423
10 B X28.17642

Levelz not connected by =ame letter are significantly different.

Figure 7.3.5.2: Demand Variability LSMeans of Backorders for Component E

As already shown by the F-statistic in section 7.2.5, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand
variability 15 causes approximately a 45 unit increase in the average backorders of component E.

Safety stock LSMeans for component E appear in Figure 7.3.5.3.

¥ Least Squares Means Table

Lewvel LeastSgMean Std Error Mean
0 27248485 27463530 272435
0.z 22876579 27463530 223.766

¥ = LSMeans Differences Student's t
o= 0.050 t= 1.98137

Lewel Least g Mean
0 A 272.45485
0.2 B Z228. 76579

Lewels not connected by same letter are significantly different.

Figure 7.3.5.3: Safety Stock LSMeans of Backorders for Component E

As expected due to the F-statistic in section 7.2.5, the different levels of safety stock are
statistically significantly different. On average, moving from a safety stock of 0% to 20% of gross
daily component requirements causes approximately a 44 unit drop in the average backorders of
component E.

As has consistently been true for both the end products and other components, lead-time
has by far the largest LSMeans impact on average backorders for component E. Figure 7.3.5.1

shows the increasing LSMeans at each level of lead-time other than the highest two lead-time levels.
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Demand variability and safety stock have nearly identical magnitude LSMeans impacts on the

average backorder level of component E.

7.3.6 - Ending Inventory of Component E

Analysis of average ending inventory of component E shows that lead-time, demand
variability and safety stock are all highly statistically significant. Moreover, the interaction between
demand variability and lead-time is statistically significant.

Lead-time LSMeans for component E appear in Figure 7.3.6.1.

¥ '='| SMeans Differences Tukey H5D
o= 0.050 Q= 250202

¥ Least Squares Means Table Lewel Least Sq Mean
Level LeastSqMean StdError 42 A 715.59339
or 144 38114 6.7240622 35 B 563 84865
14 259.13296 6.7240622 28 C 45583102
21 363.41692 §.7240622 21 D 363 41692
28 455.83102 6.7240622 14 E 258132596
35 56:3.84665 6.7240622 o7 F 144 38114
42 715.59339 5.7240622 Levels not connected by same letter are significanthy different.

¥ LS Means Plot

TUM)
c w800
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2 ¥ 8004
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B W 200
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Figure 7.3.6.1: Lead-time LSMeans of Ending Inventory for Component E

The Tukey HSD shows that every level of lead-time is statistically significantly different from
all others with an overall alpha error rate of 0.05 or 5%. The increase in average ending inventory
level due to lead-time grows at a nearly constant or slightly increasing rate for component E.

Demand variability LSMeans for component E appear in Figure 7.3.6.2.
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¥ Least Squares Means Table

Lewel LeastSq Mean Std Error Mean
10 344.05165 38621391  344.052
15 450.01585 38621391  490.016

¥ ™ LSMeans Differences Student's t
o= 0.050 t= 1.98238

Level Least Sg Mean
15 A 450.01586
10 B 344 05166

Levels not connected by same letter are significanthy different.

Figure 7.3.6.2: Demand Variability LSMeans of Ending Inventory for Component E

As already shown by the F-statistic in section 7.2.5, the different levels of demand variability

are statistically significantly different. On average, the move from demand variability 10 to demand

variability 15 causes approximately a 146 unit jump in the average ending inventory level of

component E.

Safety stock LSMeans for component E appear in Figure 7.3.6.3.

¥ Least Squares Means Table

Lewel LeastSq Mean Std Error Mean
0 3538.89330 38621391 383.893
0.2 44517423 38621391 445174

¥ ™ LSMeans Differences Student's t
o= 0.050 t= 1.98238

Lewvel Least S5q Mean
0.2 A 44517423
0 B 338.89330

Levels not connected by =ame letter are significanthy different.

Figure 7.3.6.3: Safety Stock LSMeans of Ending Inventory for Component E

As expected due to the F-statistic in section 7.2.5, the different levels of safety stock are

statistically significantly different. On average, moving from a safety stock of 0% to 20% of gross

daily component requirements causes approximately a 56 unit increase in the average ending

inventory level of component E.

Demand variability and lead-time interactions LSMeans for component E appear in Figure

7.3.6.4.
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¥ T LS5Means Differences Tukey HSD
o= 0.050 Q= 3.34163

Lewvel Least Sg Mean
1542 A 857 59283
1535 B 563.94007
10,42 C 573.59455
15,28 C 5334 51058
10,35 D 453.75323
15,21 D 422 96858
10,28 E 377 15147
10,21 F 303.86486
15,14 F 25362463
10,14 G 224854125
15,07 H 167 45805
10,07 | 121.30423

Levels not connected by =same letter are significanthy different.
¥ LS Means Plot
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£ » 8007 15 %
2 2 500
E= -
m o 400
L -
2 W 200
w -
I:I T T T T T
07 14 21 22 35 42
Lead-Time

Figure 7.3.6.4: DV*LT LSMeans of Ending Inventory for Component E

Interestingly, most interaction combinations are statistically significantly different. The
Tukey HSD differences appear throughout the interaction levels. The interaction plot in Figure
7.3.6.4 (and Figure 6.2.3) displays that as lead-time grows, higher demand variability leads to a
faster overall LSMean growth rate.

Once again, as is true for both components C and component D ending inventory levels,
lead-time has by far the largest LSMeans impact on average ending inventory for component E as
shown by the generally large increases in the LSMean ending inventory levels at each level of lead-
time. Further, the analysis shows that demand variability causes more than double the impact of
safety stock on the LSMeans of ending inventory for component E. As seen in the ending inventories
for other components, the demand variability of end products has a larger impact than safety stock
buffers on ending inventories for required components. As has been the case for other component
parts, interaction between demand variability and lead-time does play a statistically significant role

in accounting for the variability in average ending inventory levels. The LSMeans plot in figure
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7.3.6.4 (and figure 6.2.3) clearly displays that higher demand variability (i.e., demand variability 15
instead of 10) leads to accelerating ending inventory growth as lead-time grows. Yet again,
increased demand variability plays a role in accelerating the growth of the LSMeans at higher levels

of lead-time.

7.3.7 - Backorder of Component F

Analysis of average backorders of component F shows that lead-time, demand variability
and safety stock are all highly statistically significant. Further, no interaction effects appear to be
statistically significant.

Lead-time LSMeans for component F appear in Figure 7.3.7.1.

¥ = LSMeans Differences Tukey HSD

¥ Least Squares Means Table o= 0.050 0= 289965
Level LeastSgMean Std Error I;;-.rel A LEEF;T?;;;;;
07 108.01857 49057708 .. L. g 261.96616
14 178.36428 49057706 o5 B 254 32201
2 219.78066 4 9057706 o4 C 219 78966
28 254 32254 4 9057706 14 D 178.35428
35 261.96616 48057706 07 E 108.01857

42 279.40393 48057708  Levels not connected by same letter are significantly different.

¥* LS Means Plot
350
300

w 4
& 250
o ]
= 200
% 150
“ 1004
ED T T T T T

o7 14 21 23 35 42

Backorder

Lead-Time

Figure 7.3.7.1: Lead-time LSMeans of Backorders for Component F

The Tukey HSD shows that most levels of lead-time are statistically significantly different
from other levels with an overall alpha error rate of 0.05 or 5%. At the highest lead-times of 35 and
42 days as well as 28 and 35 days, the Tukey HSD fails to find a statistically significant difference (i.e.,
the Tukey individual alpha error rate is too small to allow statistical significance for those pairs). In
other words, the growth rate of average backorders due to lead-time levels off too much for the

LSMeans at the highest two pairs of lead-times to show a statistically significant difference. Of

www.manaraa.com



82

course, as with all other average backorders of components and end products, the general pattern
of the LSMeans plot is upward with a diminishing growth rate.

Demand variability LSMeans for component F appear in Figure 7.3.7.2.

¥ Least Squares Means Table
Level Least Sqg Mean Std Error

Mean
10 200.730:36 28323430 200730
15 233.55981 28323480 233.560

¥ = | SMeans Differences Student's t
o= 0.050 t= 1.93137

Lewvel Least 5q Mean
15 A 233.55981
10 B 200.73036

Levelz not connected by same letter are significantly different.

Figure 7.3.7.2: Demand Variability LSMeans of Backorders for Component F

As already shown by the F-statistic in section 7.2.6, the different levels of demand variability
are statistically significantly different. On average, the move from demand variability 10 to demand
variability 15 causes approximately a 33 unit increase in the average backorders of component F.

Safety stock LSMeans for component F appear in Figure 7.3.7.3.

¥| Least Squares Means Table

Level Least g Mean Std Error Mean
0 23431140 2.8323480 234311
0.2 19997877 2.8323480 199.979

¥ = LSMeans Differences Student's t
a= 0.050 t= 198137

Lewvel Least S5g Mean
0 A 23431140
0.2 B 19997877

Levelz not connected by same letter are significanthy different.

Figure 7.3.7.3: Safety Stock LSMeans of Backorders for Component F

As expected due to the F-statistic in section 7.2.6, the different levels of safety stock are

statistically significantly different. On average, moving from a component safety stock of 0% to 20%

of gross daily requirements causes approximately a 34 unit drop in the average backorders of
component F.

As has consistently been the true for both the end products and other components, lead-

time has by far the largest LSMeans impact on average backorders for component F. Figure 7.3.4.1
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shows the increasing LSMeans at each level of lead-time other than the highest two lead-time levels.

Demand variability and safety stock have nearly identical LSMeans impacts on the average

backorder level of component F.

7.3.8 - Ending Inventory of Component F

Analysis of average ending inventory of component F shows that lead-time, demand

variability and safety stock are all highly statistically significant. Moreover, the interaction between

demand variability and lead-time is statistically significant.

Lead-time LSMeans for component F appear in Figure 7.3.8.1.

¥ Least Squares Means Table

Level
o7
14
2
28
35
42

Least Sg Mean
132.96357
244 54007
335.33550
445 60376
567.82139
703.65194

Sid Error
5 4524867
5 4524867
5 4524867
5 4524867
5 4524867
§.4524867

¥ LS Means Plot

Endining Inventory

Figure 7.3.8.1: Lead-time LSMeans of Ending Inventory for Component F

F LS Means

T

200
600
400
200

0

¥ =L SMeans Differences Tukey HSD

a=

0.050 Q= 2.50202

Lewvel Least Sq Mean
42 A 703.65104
35 B 567.82139
28 c 445 60376
21 D 339.38590
14 E 244 54007
o7 F 132.96357

Levels not connected by same letter are significanthy different.

07

14

21 28 35 42

Lead-Time

The Tukey HSD shows that every level of lead-time is statistically significantly different from

all others with an overall alpha error rate of 0.05 or 5%. The increase in average ending inventory

level due to lead-time grows at a nearly constant or slightly increasing rate for component F.

Demand variability LSMeans for component F appear in Figure 7.3.8.2.
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¥ Least Squares Means Table

Lewvel LeastSq Mean Std Error Mean
10 322 10857 37253449 322109
15 490 54657 37253449 490547

¥ ™ | SMeans Differences Student's t
o= 0.050 t= 1.58238

Level Least Sg Mean
15 A 450.54557
10 B 322 10887

Levels not connected by same letter are significantty different.

Figure 7.3.8.2: Demand Variability LSMeans of Ending Inventory for Component F

As already shown by the F-statistic in section 7.2.6, the different levels of demand variability are
statistically significantly different. On average, the move from demand variability 10 to demand
variability 15 causes approximately a 179 unit increase in the average ending inventory level of
component F.

Safety stock LSMeans for component D appear in Figure 7.3.8.3.

¥ Least Squares Means Table

Level LeastSqMean Std Error Mean
0 383.45409 37253449 383494
02 420 16146 37253449 429161

¥ = | SMeans Differences Student's t
o= 0.050 t= 1.93238

Lewvel Least Sg Mean
nZ A 429 16145
0 B 3533.49409

Levels not connected by same letter are significanthy different.

Figure 7.3.8.3: Safety Stock LSMeans of Ending Inventory for Component F

As expected due to the F-statistic in section 7.2.6, the different levels of safety stock are
statistically significantly different. On average, moving from a component safety stock of 0% to 20%
of gross daily requirements causes an approximately 46 unit rise in the average ending inventory
level of component F.

Demand variability and lead-time interactions LSMeans for component F appear in Figure

7.3.8.4.
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¥ '*'| SMeans Differences Tukey H5D
o= 0.050 O= 334163

Lewel Least Sg Mean
15,42 A a70.65241
15,35 B 691.96851
15,28 C D42 44324
10,42 C 5336.65147
10,35 D 443 67427
15,21 E 399.37391
10,28 E 356.76428
15,14 F 285.71563
10,21 F 279.39738
10,14 G 203.356451
15,07 H 153.12573
10,07 H 112.80141

Levels not connected by same letter are significantly different.
¥ LS Means Plot
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Figure 7.3.8.4: DV*LT LSMeans of Ending Inventory for Component F

Most interaction combinations are statistically significantly different. As is the case for most
component ending inventory LSMean interaction levels, the insignificant Tukey HSD differences
appear to scatter throughout the interaction levels. The interaction plot in Figure 7.3.8.4 (and
Figure 6.2.4) displays that as lead-time grows, higher demand variability leads to a faster overall
LSMean growth rate.

As is the case for components C, D and E ending inventory levels, lead-time has by far the
largest LSMeans impact on average ending inventory for component F as shown by the generally
large increases in the LSMean ending inventory levels at each level of lead-time. Moreover, the
output shows that demand variability has more than triple the impact of safety stock on the
LSMeans of ending inventory for component F. As seen in the ending inventories for other
components, the demand variability on end products has a larger impact than safety stock buffers
on ending inventories for required components. Component F is similar to component C in that

both components feed into end products A and B (see section 3.1 for details).
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As has been the case for other component parts, interaction between demand variability
and lead-time does play a statistically significant role in accounting for the variability in average
ending inventory levels. The LSMeans plot in figure 7.3.8.4 (and figure 6.2.4) clearly displays that
higher demand variability (i.e., demand variability 15 instead of 10) leads to accelerating ending
inventory growth as lead-time grows. Once again, increased demand variability plays a role in

accelerating the growth of the LSMeans at higher levels of lead-time.

7.4 - Final Results of Statistical Examinations

Every full model in section 7.1 shows statistically significant results for every response. In
each model, the main effect variables, lead-time, demand variability and safety stock, are
statistically significant. In some of the models, the interaction term of lead-time crossed with
demand variability is also statistically significant even at an alpha error rate of 0.001. In addition, all
but one of the models displays an adjusted R* well over 90%. In other words, the models appear to
do a very good job of explaining the variation in their respective responses—average ending
inventories and backorders.

Every model shows that the largest LSMeans impact on both average ending inventory
levels and average backorder levels derives from lead-time. At the highest levels of lead-time, the
differences between LSMean levels sometimes lack significance in a Tukey HSD test. The simulation
models longer lead-times with higher standard deviations as discussed in section 3.6. Hence, the
likelihood of the larger random error’s causing lowered statistical significance was built into the
model to keep validity high.

Models for average backorder levels generally show similar magnitude LSMeans impacts
due to changes in demand variability and safety stock level. In contrast, models for average ending
inventory levels generally show that demand variability has a 200%-300% greater impact on
LSMeans than safety stock levels. Chapters 5 and 6 note this pattern as a faster growth rate in the
average ending inventories due to higher demand variability as opposed to nearly constant
additions to the ending inventory due to higher safety stock levels — the same pattern that emerges
from the interaction effects of demand variability with lead-time.

Overall, lead-time appears to have the greatest impact on both backorders and ending
inventory. Demand variability and safety stock levels have different impacts depending on the

response of interest. High demand variability causes large growths in LSMeans of ending inventories
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but relatively small growths in the LSMeans of average backorder levels. High safety stocks tend to
cause relatively small growth in the LSMeans of average ending inventories and commensurate

decreases in average backorders.

www.manharaa.com




88

8 - Examining Zero Lead-Time Variability, Higher Levels of Safety
Stock and Larger Batch Sizes

Chapter 8 focuses on isolating the effects of zero lead-time variability, safety stocks at 40%
of gross daily component requirements and different lot sizing rules with larger batch sizes. Each of
these factors goes beyond the scope of the original experiment. The examination of each factor
focuses on the practical perspective. Factors are also checked statistically when feasible. Full
statistical analysis would require more runs at each factor/treatment level to understand the true

impacts beyond the extremes investigated below.

8.1 - Zero Lead-Time Variability

To isolate the impact of the lead-time variability in the experiment, the simulation
generated 12 extra runs with zero lead-time variability. Safety stock is set to zero in every run.
Demand variability includes both sigma equal to 10 and 15. Lead-time varies from seven to forty-
two days in increments of seven. In every case, the full model for every response, from backorders
of end products/components to ending inventories of components, shows statistically significant
results.

Specifically, every model (except ending inventory for component D) shows that lead-time
variability plays a statistically significant role in explaining variability in the responses. Component D
shows a p-value of slightly more than 0.01 for the lead-time variability factor. Lead-time and
demand variability are also statistically significant in every model. Some interactions are significant
in the various models. In particular, lead-time crossed with lead-time variability as well as demand
variability crossed with lead-time tend to be statistically significant in many models.

Figures 8.1.1 and 8.1.2 display the impact of lead-time variability across all lead-times in

terms of average backorders for the end products.
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Average Backorder of End Product A

- 160
= __--'-‘
£ 140 *
=]
2 120 /
g e
g 100
/ —#—Full Lead-Time

5 &0 Varishility
B
= "y ——ZeroLead-Time
2 a0 Wariability
5’ 20
5 a T T T T 1

Q 10 20 30 40 50

Lead-Time in Days

Figure 8.1.1: End Product A Backorders Full vs. Zero Lead-Time Variability across Lead-Times

Average Backorder of End Product B
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Figure 8.1.2: End Product B Backorders Full vs. Zero Lead-Time Variability across Lead-Times

Both Figures 8.1.1 and 8.1.2 show distinctly higher levels of average backorders for end
products at every lead-time level when lead-time variability is present. Moreover, the growth rate
of average backorders is faster when lead-time variability is present.

Figure 8.1.3 summarizes the average backorder levels for each component with both levels

of lead-time variability across all lead-times.
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The pattern in each graph of Figure 8.1.3 is roughly the same. The average backorder level

Average Backorder of Component C Average Backorder of Component D
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Figure 8.1.3: Component Backorders Full vs. Zero Lead-Time Variability across Lead-Times

grows slightly faster for components with the inclusion of full lead-time variability. Even without

lead-time variability, the average backorder level grows as a function of lead-time.
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Figure 8.1.4: Component Ending Inventory Full vs.

Zero Lead-Time Variability across Lead-Times
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The average ending inventory levels show slight increases when moving from zero to full
lead-time variability. In fact, the amount of increase due to lead-time variability appears nearly
constant at each level of lead-time. The growth patterns are nearly identical for all components.

Figure 8.1.5 summarizes the LSMeans of backorders for each response.

¥| Least Squares Means Table ¥ Least Squares Means Table ¥ Least Squares Means Table
Level Least SgMean ctd Error Level  Least Sg Mean Sid Error Level Least Sq Mean Std Error
Full 109.73721 0 569785096 Full 100.08658 0.73491930 Full 420.76671 3.8766564
Nene 27 20089 0.585T72596 None 7285421 0.73491930 None 366.86792 3.8766564
¥ ™ L SMeans Differences Student: ¥ ™ L5Means Differences Student” ¥ ™' LSMeans Differences Student'
o= 0.050 t= 1.98498 Backorders o= 0.050 t= 1.98458 Backorders g 050 t= 1.98498 Backorder
Level Least Sq Mean End Product | evel Least 5g Mean ENd Product o Least Sg Mean Component
Ful A 109.73721 A Full A 100.08658 Full A 420 T66T1
None B 87.89089 None B 7285421 Mone B 366 86792
¥ Least Squares Means Table ¥ Least Squares Means Table ¥ Least Squares Means Table
Level Least SgMean Std Error  Level  Least 5g Mean StdError  |evel Least Sg Mean Std Error
Full 60.107873 0.44354188 Ful 272 48486 26747453 Ful 234.31140 2 7235856
MNone 54 BIR445 0 44354188 Mone 244 T7918 26747453 Mane 2410654 2 72958558
¥| ™ | SMeans Differences Student’ ¥| ™ L5Means Differences Student’ w| = | SMeans Differences Student!
a= 0.050 t= 1.93453 Backorder o= 0.050 t= 1.98438 Backorder  ,_ ;95 = 1.98408 Backorder
C t
Level Least Sq Mean CDmFII:'DI'IEI'It Level Least Sg Mean ompéonen Level Least 5g Mean COMPONent
Full A B0.107873 Full A 27248486 Full A 234.31140
None B 54 838445 None B 24477918 MNone B 214.10654

Figure 8.1.5: Lead-Time Variability LSMeans of Backorders

The range of LSMeans impacts goes from only a 5 unit or 9.7% change in the backorders of
component D (only required for product A in a 1:1 ratio) to a 49 unit or 14.7% change in the
backorders of component C (required for both products A and Cin a 4C:1A and 4C:1B ratio). Both
the quantity of components per end-item and the joint/non-joint requirement for both end
products seem to impact the raw size of the LSMeans for the backorders.

Figure 8.1.6 summarizes the LSMeans of ending inventory for each component response.

¥ Least Squares Means Table ¥ Least Squares Means Table
Level LeastSgMean Std Error  Level Least SqMean Std Error
Full 536 55206 5.3910221 Full 94 297885 0.98573575
None 454 27152 5.3910221 None 50651234 0.98573575

¥ '='| SMeans Differences Student’ ¥| ™ LSMeans Differences Student’
o= 0.050 t= 1 98458 Ending o= 0.050 t= 1.98498 Ending
Level Least SqMean Inventory ) cye Least 5q Mean MVEMtory

EafR EE Component Component

Full A 536.55206 - Full A 94 257885
Maone B 484 27152 None B 50.851234
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¥ Least Squares Means Table ¥ Least Squares Means Table
Level LeastSq Mean Std Error Level LeastSqMean Std Error
Full 388 89330 35106410 Full 333.459409 32427728
None 353.66022 35106410 None 355.68155 32427728

¥ T LSMeans Differences Students ¥ ™ L5SMeans Differences Student”
o= 0.050 t= 1.98495 Ending o= 0.050 t= 1.93458 Ending
Level Least Sq Mean C:;e'::er:t Level Least Sq Mean c'“"'e“tc'“" :
Full A 388 89330 r';:_ Full A 3833.49409 ::-m;::}nen
None B 363.66022 None B 365.63155

Figure 8.1.6: Lead-Time Variability LSMeans of Ending Inventory

Ending inventories do not change greatly in raw terms due to the inclusion/removal of lead-
time variability. Ending inventory for component D shows LSMeans growth of approximately four
units or 4% due to inclusion of full lead-time variability. Ending inventory for component C grows by

approximately 42 units or 8.5% due to the inclusion of full lead-time variability.

8.2 - Exploring Component Safety Stock at 40% of Gross Daily
Requirements

The main experiment examines only two levels of safety stock—0 and 20% of gross daily
component requirements. Hence, the simulation generated 4 extra runs with component safety
stock set to 40% of average gross daily requirements. Lead-time sits at two levels—seven days and
forty-two days. Demand variability includes sigma equal to both 10 and 15. The full factorial
model for every response (i.e., backorders of end products and components as well as ending
inventory for components) shows highly statistically significant results with very large F-statistics
and adjusted R* above 90% in every model.

Not every factor/treatment level shows significance. Each model shows that safety stock
level plays a statistically significant role in explaining variability in the responses (all p-values <
0.0001). Lead-time and demand variability are also statistically significant in every model. Only the

interaction between demand variability and lead-time shows significance in some of the models.

www.manaraa.com



93

¥ =] SMeans Differences Tukey HSD

o= 0.050 Q= 2.40876 Backorder for
Lewvel Least Sg Mean End Product A
0 A 99 507944
02 B 85914924
0.4 B 70234073

Levels not connected by same letter are significantly different.

¥ LS Means Plot
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Figure 8.2.1: Safety Stock Level Impact

¥ ~'| SMeans Differences Tukey H5D
a= 0.050 Q= 240876 Backorder for

Level Least Sg Mean End Product B
0 A 89.783843
0.2 B 77.173972
0.4 C 63.746710

Levels not connected by same letter are significantly different.
¥ LS Means Plot
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on LSMeans of End Product Backorders

Each increase in the level of safety stock lowers the overall level of backorders by a Tukey

HSD significant amount. In terms of the LSMeans,

gross daily component requirements lowered end

moving from zero safety stock to forty percent of

product A average backorders from 100 to 71

units or a 29% drop. End product B saw a similar LSMeans drop in average backorders from 90 to 64

or a29% drop. In other words, the impact of increasing safety stock appears to be proportional in

both end product average backorder levels. The pattern was similar for all component backorder

levels.

Figure 8.2.2 displays the statistical results on component ending inventory levels.

¥ ™ LSMeans Differences Tukey HSD

o= 0.050 Q= 240876 Ending Inventory

Component C

Level Least Sg Mean
04 A 725.38308
0.2 B 631.65546
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Levels not connected by same letter are significantly different.
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| = LSMeans Differences Tukey HSD ¥ |~ L5Means Differences Tukey H5D
o= 0.050 Q= 240876 Ending Inventory o= 0.050 Q= 240876 Ending Inventory
Level Least Sg Mean Component E Level Least 5q Mean Component F
0.e A 51471045 04 A 434 53496
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Figure 8.2.2: Safety Stock Level Impact on LSMeans of Component Ending Inventory

Only component C shows a Tukey HSD statistically significant result at each level of safety
stock. The other components show statistically significant differences when moving from a
component safety stock of 0% to 40% of gross daily requirements. In each case, the general trend is

for greater levels of ending inventory in each component as safety stock rises.

8.3 - Component Batch Size at Two Weeks of Gross Daily Requirements

The main experiment uses the L4L batch sizing rule. Hence, to check what happens to
backorders and component ending inventories, 8 extra simulation runs show the impact of
increasing the batch size to two weeks of gross daily requirements for each component. Lead-time
sits at two levels—seven days and forty-two days. Demand variability includes sigma equal to both
10 and 15. Lead-time variability of zero or full is also included in these runs. The full factorial to
degree two model for every response (i.e., backorders of end products and components as well as
ending inventory for components) shows statistically significant results with very large F-statistics
and adjusted R* above 90% in every model.

Not every factor or interaction level shows significance. Each model shows that lot size
plays a statistically significant role in explaining variability in the responses (all p-values < 0.0001).
Lead-time and demand variability are also statistically significant in every model. Lead-time
variability is usually statistically significant. Various interaction terms show significance in different
models. However, no interaction terms are significant across all models. Hence, for ease of

examining this extension, all interactions are temporarily ignored.
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¥ Least Squares Means Table

¥ Least Squares Means Table

Lewel Least Sg Mean Std Error Lewvel Least 5g Mean Std Error
14davs 11.089524 3.0325284 14days 5 254959 28373543
1day 89.865104 3.0325284 1day r9rmg1s 28373543
| ™| SMeans Differences Student'st ™ ™ LS5Means Differences Student's t
o= 0.050 t= 1.9921 Backorder  g- ggs0t= 1.9921 Backorder
Level Least Sg Mean End Product A Level Least Sq Mean End Product B
1day A 59.865184 1day A 77977615
l4days B 11.085924 14days B 9284959

Figure 8.3.1: Lot Size Impact on LSMeans of End Product Backorders

The drop in end product backorders due to the larger lot size appears to be dramatic. Both

products see an average backorder drop rate of over 87%. Specifically, the average end product

backorder rate for end product A drops by 87.7% while end product B experiences an 88.5% drop.

Components experience even larger percentage drops in average backorder levels. Of course, end

products become backordered when any component required for the product is backordered.

Hence, the end product backorder rate is worse than the component backorder rate. All component

backorder rates fall by at least 90%. As suspected, ending inventories rise dramatically to cause

such a result as shown in Figure 8.3.2.

¥ Least Squares Means Table

¥ Least Squares Means Table

Lewel Least g Mean Std Error Lewvel Least Sg Mean Std Error
14days 3709267 21.9653799 14days 753.35508 4 4445769
1day 528.4637 21.9653799 1day 9522241 4 4445769

¥*| ™| SMeans Differences Student'st * ™ L5Means Differences Student’s t

o= 0.050 t= 1.8921 Ending Inventory  g= p.os0t=  1.9921

Lewvel Least Sq r‘mﬂrli:ompc-nent = Lewvel Least Sq Mean
14days A SO70.9267 14days A 753.35508
1day B 528 4637 1day B 06 22241

¥ Least Squares Means Table

Ending Inventory
Component D

¥ Least Squares Means Table

Level  Least SgMean Std Error Level  Least Sq Mean Std Error
14days 3735 6558 189687729 14days 3053 5834 17.182902
1day 300.35892 18.8987725 1day 350 5451 17182002

¥ = LSMeans Differences Student's t

o= 0.050 t= 1.9974 Ending Inventory o= 0.050 t= 1.99%21
Component E

Level Least 5q Mean Level Least Sq Mean

1édays A 37396558 14days A 30535834

1day B 380.3652 1day B 389.5451

Figure 8.3.2: Lot Size Impact on LSMeans of Ending Inventory of Components

¥ '] SMeans Differences Student's t

Ending Inventory
Component F
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While backorders drop by 87% or more for both end products and components, ending
inventories rise by as much as 1012% or a ten-fold increase in ending inventories. The results

dramatically display the classic issue of balancing inventories with service level.

8.4 - The Exploratory Summary

Increased safety stocks and batch sizes both lead to lower average backorder levels at the
expense of higher inventory levels. A world with always on-time deliveries (i.e., no lead-time
variability) leads to lower backorders and lower ending inventory. Interestingly, zero lead-time
variability has more of an impact on reducing backorders than affecting inventory. In contrast,
increased batch sizes increase average inventory levels enormously while also having potentially
large impacts in reducing average backorder levels. Safety stock at 40% of gross daily requirements
shows less dramatic LSMeans impacts on backorders and component ending inventories. None the
less, increasing safety stocks is one of the most common steps firms take to enhance the service
level. The findings show that safety stocks do indeed provide the desired buffer to lower overall

average backorder levels—something future research may wish to examine further.
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9 - Conclusions

The results of Chapters 5 and 6 show the trade-off between ending inventories and
backorders. While backorders show diminishing growth rates as a function of lead-time, the ending
inventories show the opposite trend. Intuitively, as lead-time and lead-time variability increase,
firms rationalize the requisite increase in batch sizes and inventory as a means to enhance
economies of scale in purchasing and transportation. The reality is that firms have no choice but to
hold more inventory as lead-time increases regardless of discounts or economies of scale and scope.

The graphics of Chapter 4 display how lead-time plays a large role in increasing the rate of
backorders while simultaneously increasing the ending inventory levels. In other words, lead-time
causes both backorders and inventories to rise dramatically. Demand variability and safety stock
levels both have impacts on backorders/ending inventories to varying degrees. Safety stock tends to
cause fairly constant increases in ending inventory and somewhat varied impacts on backorders as a
function of lead-time.

The statistical analyses of Chapter 7 display in numbers how the results of Chapters 4
through 6 emerge as statistically significant in ANOVA least squares means analysis. Just as seen in
the graphics of Chapters 4 through 6, lead-time appears to have the largest impact of any of the
experimental factors. High demand variability appears to cause fairly large growths in ending
inventories but relatively small growths in the average backorder levels. High safety stocks tend to
cause relatively small growth in average ending inventories and commensurate decreases in average
backorders.

Chapter 8 shows the same pattern of trade-offs between backorder rates and ending
inventories in the more extreme cases. When batch sizes become large, the ending inventories
grow to extreme levels while the backorders diminish markedly. Safety stocks also promote
decreased backorders but at the cost of higher ending inventories. In the extreme case of zero lead-
time variability, both backorders and ending inventories fall. Interestingly, while the impact of zero
lead-time variability on backorders is fairly significant, the impact on ending inventories is somewhat
minimal under the L4L batch size rules and no safety stock.

As stated at the beginning of this research, global sourcing represents one of the major
focuses in many industries as a means to lower costs. The costs associated with global sourcing and
associated long lead-times have been difficult to quantify. This paper gives guidance through

simulation to help ascertain the impact of lead-time, lead-time variability under different levels of
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safety stock and demand variability on inventories and backorders—two major sources of costs for
firms.

In sum, the results of the experiment show that firms do need safety stocks or large batch
sizes of component parts to prevent excessive backorders. High ending inventories represent the
trade-off for the safety stocks and large batch sizes. The research also demonstrates that firms need
to consider a factor not often investigated—lead-time. In many cases, firms seem to assume that
lead-time variability, not raw lead-time, represents a key factor in creating excess costs. The results

of this research call that assumption into question.
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